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ABSTRACT 

According to the U.S. Department of Transportation’s National Highway Traffic Safety Administration (NHTSA), 
37,461 people died in the United States in traffic crashes in 2016, a 5.6% increase in fatalities from 2015. It was the 
second consecutive year of increasing fatalities following an 8.4% increase from 2014 to 2015. This study applies 
random-effects generalized linear mixed modeling techniques to examine the association of changes in traffic 
fatality counts with changes in explanatory factors, by state, between 2005 and 2016. Three regressions modeled 
different outcomes: 1) passenger vehicle occupant fatalities, 2) pedestrian fatalities, and 3) motorcycle fatalities 

Motor vehicle-related traffic fatalities were collected by year and by state using NHTSA’s Fatality Analysis 
Reporting System (FARS).  A variety of sources provided measures on explanatory factors. The Fatality counts 
(outcome) and explanatory factors were then combined as panel data by year (2005-2016) and state (51 states 
including the District of Columbia). The models tested the association between fatalities and more than seventy 
explanatory factors including economic, exposure, behavioral and vehicle factors. 

The study found that the increases in passenger vehicle fatality counts were associated with increases in vehicle 
miles traveled (exposure) and an improving economy. In addition, the increase in the population age 65 and older 
and an increase in the percent of this population in the workforce also was associated with increasing fatality counts.  
Several behavioral factors were associated with changes in fatality counts, including non-belt use and increased 
drunk driving. Conversely, improved vehicle safety design was associated with a decline in occupant fatalities. A 
rise in motorcycle fatalities was associated with increased exposure (motorcycle registrations and overall vehicle 
miles travelled) and an improving economy. Among pedestrian and motorcycle fatalities, there is some evidence that 
driver distraction plays a role.  

While the quasi-experimental study design does not allow for inferences of causality, the models can be applied to 
forecast future fatality counts based on expected or observed environmental, behavioral and vehicle factors or to 
evaluate the potential impact of prospective interventions. 

Increased exposure, the improving economy, and behavioral factors drove increases in fatality counts between 2005 
and 2016. However, improved vehicle safety design substantially countered these effects, mitigating the increases. 

INTRODUCTION  

According to the U.S. Department of Transportation’s National Highway Traffic Safety Administration (NHTSA), 
37,461 people died in the United States in traffic crashes in 2016, a 5.6% increase in fatalities from 2015 the second 
consecutive year of increasing fatalities following a 8.4% increase from 2014 to 2015 [1].  The data further showed 
traffic deaths rising across nearly every segment of the population.  The last single-year increase of this magnitude 
was in 1966, when fatalities rose 8.1 percent from the previous year.  
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These figures come after a decade of progress. Eleven years ago, the number of traffic deaths was nearly 25 percent 
higher, with 42,708 fatalities reported nationwide in 2005 [2]. In the past two decades, behavioral safety and 
enforcement programs have helped lower the number of deaths by increasing seat belt use and reducing impaired 
driving [3][4].  Vehicle improvements, including air bags and electronic stability control, have made substantial 
contributions to reducing traffic fatalities [5].  

Increased exposure in terms of vehicle miles travelled (VMT) does not account for all of the increases. In 2014 there 
were 1.08 traffic-related deaths per 100 million VMT. This increased to 1.12/ 100 million VMT in 2015 and 
1.18/100 million VMT in 2016, a 6.5% and 2.5% change, respectively [1][2]. Changes in fatality counts varied by 
person type, with non-occupants contributing more to the increases than occupants[2].  The toll was particularly 
high among and older drivers (age 65+) in 2015 and 2016.  

Risk factors for traffic crashes and deaths are fairly well understood. One tool for analyzing an injury event and 
ways to either prevent the injury or reduce the harm done is the Haddon Matrix.  In 1970, William Haddon Jr. 
proposed a matrix that allows simultaneous consideration of the stages over time of an injury event (pre-, during, 
and post-event) with all the possible host, agent/carrier, and environment factors involved in the event. Table 1 
presents a Haddon Matrix that identifies factors relevant to traffic fatalities. Important person-level factors include 
restraint use, driver impairment, and driver distraction, age and gender. Important vehicle factors include speed, 
vehicle size, age and safety design. Environment factors are differentiated as either physical (i.e. road conditions, 
weather, proximity to emergency medical services) or social (i.e. existing safety laws and economic conditions).  

Table 1. Haddon Matrix of factors relevant to traffic deaths 
  Person Factors Vehicle/Equipment 

Factors 
Environment 

Physical Social/Economic 

Pre-Crash Driver Experience 
Impairment 
Gender 
Driver condition  
Risk-taking 

behavior 

Vehicle condition  
Driving Speed 
Load characteristics 
Safety package 

Road quality  
Road characteristics  
Weather Conditions 

Existing laws  
Enforcement of laws 
Safety culture 
Economy 
Congestion 
Travel time/Exposure 

Crash Helmet use 
Restraint use 
Injury Propensity  
Health  
Age 

Speed 
Crashworthiness/safety 

design of vehicle 
Vehicle size/Body Type 
Vehicle condition  
Type of crash  

Road features  
Type and size of object 

struck 

Laws relevant to 
human/ vehicle/ 
physical factors  

Post-Crash Health  
Age 
Impairment 

Integrity of fuel and 
battery systems 

Availability of automated 
crash notification and 
GPS locator 

EMS response speed and 
quality 

Distance to trauma care 
Availability of 

rehabilitation 
programs 

Accessibility to crash 
victims 

EMS protocols 
Public support for 

trauma care and 
rehab 

 

Changes in these factors will influence the number of crashes or reduce the severity of crashes resulting in fewer 
fatalities. Depending on the factor or the combination of factors, small changes can have large impacts and vice 
versa. State or local level policies, laws, enforcement, and education can influence many of these factors. 
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Engineering approaches (e.g. traffic calming, rumble strips, advanced driving systems in vehicles, vehicle safety 
design) may also counter some factors.  

The growth in the population of motor vehicles and the increase in VMT that accompanies economic growth is 
associated with an increase in road traffic crashes.  According to NHTSA, job growth and low fuel prices were two 
factors that led to increased driving, including increased leisure driving and driving by young people [2].  

Weather and regional demographic distributions are other examples of high-level factors shown to play a role in 
crash rates. Consistently, studies have shown that increases in temperature are associated with an increase in fatal 
traffic crashes due to an increase in VMT and exposure for pedestrians, bicyclists, and motorcyclists [6][7]. 

Nevertheless, even when state characteristics are similar, considerable variability in traffic deaths exists. For 
example, states with similar populations and seat belt laws have substantially different outcomes with respect to 
vehicle occupant deaths, seat-belt-use rates, and unbelted vehicle occupant fatalities. 

This paper examines the association of these factors with the number of traffic deaths in the United States to identify 
key factors driving the changes in deaths over the past twelve years. This study quantifies the contribution of high-
level factors like the economy and VMT to distinguish the role of key factors relevant to intervention by state and 
local governments and vehicle manufacturers.  

METHODS 

This study analyzes changes in traffic death counts in U.S. states from 2005 to 2016 using generalized linear mixed 
modeling. These regressions model the association of changes in measurable factors (explanatory variables) with 
changes in traffic death counts by state (outcome variable). Three regressions modeled different outcomes: 1) 
passenger vehicle occupant fatalities, 2) pedestrian fatalities, and 3) motorcycle fatalities.  

Explanatory Variable Selection 
The Haddon matrix (Table 1) was used as a guide in selecting explanatory variables to test in the model. To be 
included in the model, the variable had to be available by state and year. Over seventy variables were tested. These 
are listed in Appendix A.  

Data Sources 
Table 2, Table 3, and Table 4 detail the data sources for the outcome, exposure and explanatory variables included 
in the final models.  

Table 2. Data Sources for the Outcome Measure 
Measure of Outcome Data Source and Description 
Fatality Counts Fatal Analysis Reporting System (FARS) 
 

Table 3. Data Sources for Exposure Measures 
Measures of Exposure Data Source and Description 

Vehicle Miles Travelled 
Highway Statistics, Federal Highway 
Administration 

Population United States Census Bureau 
Number of Vehicles National Vehicle Population Profile, R.L. Polk 

Motorcycle Registrations 
Motorcycle Sales Report, 2000-2016, Motorcycle 
Industry Council 

 

Table 4. Data Sources for Explanatory Measures 
Measure of Key Factors Data Source and Description 
U.S. Population Counts, demographic United States Census Bureau 
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distributions 
Gross Domestic Product United States Bureau of Economic Analyses 
Employment percentages by age United States Census Bureau 
Average Annual Temperature National Oceanic and Atmospheric 

Administration 
Motorcycle Registrations Motorcycle Sales Report, 2000-2016, Motorcycle 

Industry Council 
Alcohol Consumption National Institute of Alcohol Abuse and 

Alcoholism 
Self-Reported Belt Use Behavioral Risk Factor Surveillance System, 

Centers for Disease Control 
Self-Reported Drunk Driving Behavioral Risk Factor Surveillance System, 

Centers for Disease Control 
Observed Driver Handheld Use while Driving National Occupant Protection Use Survey, 

National Highway Traffic Safety Administration 
Average IIHS crash test rating of vehicle fleet Insurance Institute for Highway Safety  crash test 

ratings 
Average NCAP Score of vehicle fleet National Highway Traffic Safety Administration, 

New Car Assessment Program 
Percent of vehicle fleet ESC-equipped Safercar.gov, National Highway Traffic Safety 

Administration 
Average, Median, Vehicle Mass and Mass 
distribution of state vehicle fleet 

National Vehicle Population Profile, R.L. Polk 

 

State motor vehicle traffic deaths counts were tabulated using the NHTSA-administered Fatality Analysis Reporting 
System (FARS). VMT was tabulated by state using annual data from the Federal Highway Administration. Gross 
Domestic Product (GDP), based on data from the U.S. Bureau of Economic Analysis, was the primary economic 
measure included in the final model. United States Census Bureau data provided information on state demographic 
distributions over time, means of transportation to work, and population employment characteristics. 

The Center for Disease Control’s Behavioral Risk Factor Surveillance System (BRFSS) provided data on risk 
behaviors. The BRFSS is a national random digit dial telephone survey. Data are collected at the state level among a 
representative sample of the population over 18 years of age. Regarding belt use, the survey asks the question: “How 
often do you use seatbelts in your car?” The possible responses are: always, nearly always, sometimes, seldom, and 
never. For this study we defined “rarely belted” as those responding “sometimes”, “seldom”, or “never”. Regarding 
drunk driving, the survey asks the question: “In the past 30 days, have you driven after drinking too much?” with a 
yes or no response. The BRFSS also includes a question on binge drinking (5 or more drinks for men and 4 or more 
drinks for women in one drinking session). 

Observed belt use data are available by state from the annual National Occupant Protection Use Survey (NOPUS), 
coordinated by NHTSA. This probability-based survey collects observations on driver and right-front passenger seat 
belt use. Observations of driver hand held use are also included in the NOPUS and used in this study.  

Weather data (precipitation and temperature) were obtained from the National Oceanic and Atmospheric 
Administration (NOAA). The NOAA maintains and collects data from automated weather stations distributed across 
all 50 states.  

Changes in state laws (in particular alcohol, motorcycle, and graduated drivers licensing) were assessed using 
information available from the IIHS and the Governors Highway Safety Association. 



Spicer 5 
 

This study includes a detailed focus on the role of vehicle fleet characteristics (age, safety design, mass disparity). 
To compute measures of these characteristics, we compiled, by state and year, counts of the vehicle population by 
vehicle make, model and model year using data published by R.L Polk and Co.  Vehicle mass (from NHTSA) and 
crash testing data (from the Insurance Institute for Highway Safety and from NHTSA’s New Car Assessment 
Program) are available by make, model and model year. IIHS ratings were converted to numeric scores: poor=1, 
marginal=2, acceptable=3 and good=4. Using these data merged with R.L. Polk vehicle population data (by make, 
model and model year), the study computed safety-related measures of the vehicle fleet for each state over time. 
Therefore, changes in these measures represent the improved safety design of new vehicles as they penetrate the 
fleet. including average IIHS rating, average NCAP rating, average vehicle mass, and fleet age. In addition, we 
computed several measures of mass disparity to characterize any changing distribution of passenger vehicles by 
mass. 

Other measures tested in the regression models but not included in the final models were obtained from an 
additional number of data sources: Gasoline prices (from the U.S. Energy Information Administration), driving and 
walking time per day (from the American Time Use Survey, Bureau of Labor Statistics), drug- and opioid-related 
fatalities (Multiple Cause of Death File, CDC), number of mobile phone subscribers (Voice Telephone Services 
Report, Federal Communications Commission). 

A full list of measures and data sources is compiled in Appendix A. 

Data Preparation 
Outcome and explanatory variables were compiled as panel data by year (2005-2016) and state, resulting in 612 
observations (12 years x 51 states/DC). Because the scales of the explanatory variables varied dramatically, all 
variables were standardized and centered. For some data sources the data were missing in one year. In this case, the 
variable was imputed as the mid-way between the previous year and the following year. No 2016 estimates (last 
values) were missing in the final analysis. 

Statistical Modeling 
Generalized linear mixed models (GLMM) were created modeling the relationship between changes in the 
explanatory variables with fatality counts by year and state. GLMM is an extension of linear mixed models that 
combines the characteristics of generalized linear models and mixed models. The mixed model includes variables on 
two levels, time and state. This type of regression is appropriate for panel data with repeated measures over time. 

While the outcome variables are count data (count of traffic fatalities), the assumptions for Poisson regression 
(equality of mean and variance of the outcome variable given the explanatory variables) were not met. Therefore, we 
used the negative binomial log link function.  

Model Specification 
GLMMs were fitted at two levels (state and time) using the panel data. The model allows for independent random 
effects for the intercept and slope for each subject (i.e. state). The model allows for an independent state-level 
random effect to incorporate the data structure of years nested in a state.  

Measures to be included as explanatory variables were collected from multiple sources. Often there was more than 
one way to measure a key factor; either in different ways by different sources or by defining one source in different 
ways. For example, we developed three measures of belt use: 1) percent reporting rarely belted, 2) percent reporting 
always belted in the BRFSS, and 3) the percent observed daytime belted rate reported in the NOPUS. Different 
measures of the same key factor were tested separately for inclusion in the model. In determining which variable to 
use in the final model we considered measure’s significance in the model and its contribution to model fit (measured 
by Bayesian Information Criterion, BIC).  

Criteria for inclusion in the final model included testing for significance, collinearity, interaction effects, examining 
the impact on the coefficients of other explanatory variables, and the variable’s contribution to model fit. The 
number of explanatory variables included in the final model was limited to between eight and ten due to the model 
degrees of freedom. Highly correlated variables (Pearson correlation coefficient>0.8) were not included 
simultaneously in specifying or in the final model. 
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This study further estimates the individual contribution of each key factor in the change in fatalities from 2015 to 
2016 by applying the model to the known change in that key factor from 2015 to 2016 holding the other variables at 
2015 values. For example, the contribution of the change in percent of adults reporting driving drunk is determined 
by predicting the number of fatalities in 2016 based on the change in this variable where all other explanatory 
variables remain at 2015 levels.  The individual factor contributions by this method are not additive as their effects 
interact. 

RESULTS 

Figure 1 presents the counts of traffic-related fatalities over time, by person type. Changes in fatality counts varied 
by person type, with non-occupants contributing more to the increases than occupants.  Fatalities decreased 
monotonically until 2012. In 2015 and 2016 traffic-related deaths increased again. Increases among non-occupant 
fatalities were greater than vehicle occupant fatalities. Fatality counts increased by 11.9% and 9.0% among 
pedestrians in 2015 and 2016, respectively, and 13.7% and 1.3%, respectively, among pedalcyclists. Motorcyclist 
deaths increased 9.5% and 5.1% in 2015 and 2016, respectively. Passenger vehicle occupant deaths increased 7.5% 
and 4.7%, respectively.  

 

Figure 1. Number of Fatalities by Crash Year and Person Type (Source: Fatality Analysis Reporting System, 
National Highway Traffic Safety Administration) 

Figure 2 plots state VMT versus the count of traffic-related fatalities for the 50 states and Washington D.C. for each 
of the years between 2005 and 2016. The trendline shows that fatality counts are highly correlated with exposure. 
However, the points do not cluster tightly around the line indicating that state- and time-related variability in risk 
exists that is not fully explained by changes in VMT alone. 
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Figure 2. Count of Fatalities Versus Vehicle Miles Travelled, for 50 states and the District of Columbia 
between 2005 and 2016. 

Table 5, Table 6, and Table 7 present the modeled fixed effects parameter estimates of the explanatory variables and 
the direction of this relationship for passenger vehicle occupant fatalities (Table 5), pedestrian fatalities (Table 6), 
and motorcycle fatalities (Table 7). “Positive” indicates that as the explanatory variable changes, fatalities change in 
the same direction; i.e. an increase in the explanatory variable is associated with increasing fatalities, and vice versa. 
“Negative” indicates that as the explanatory variable changes, fatalities change in the opposite direction; i.e. an 
increase in the explanatory variable is associated with decreasing fatalities, and vice versa. 

Passenger Vehicle Occupant Fatalities 
Eight explanatory variables were included in the final model predicting passenger vehicle occupant fatalities (Table 
5). The final model controlled for high-level factors related to exposure (VMT per capita), the economy (GDP) and 
temperature. With the exception of average IIHS rating, all explanatory variables showed a positive association with 
fatality counts, i.e. an increase in the explanatory variable was associated with an increase in fatality counts. The 
models found that an increase in the average IIHS rating was associated with a decrease in fatality counts. 

Table 5. Fixed Effects Parameter Estimates of Explanatory Variables Included in the Final Model of 
Passenger Vehicle Occupant Fatalities 

Explanatory Variable Estimate p-value 

Association 
with 

Fatalities
Average fleet IIHS Rating -0.204 < 0.001 Negative
Employment Rate for the Population Age 65+ (%) 0.211 < 0.001 Positive
Population Age 65+ (% of total population) 0.167 < 0.001 Positive
Adults Reporting Rarely Belted (% reporting sometimes, 
seldom or never wear seatbelt ) 

0.116 < 0.001 Positive

Adults Reporting Drunk Driving in the past 30 days (%) 0.012 0.016 Positive
Average Temperature (degrees F) 0.137 < 0.001 Positive
VMT per Capita (millions) 0.196 < 0.001 Positive
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GDP (Billions) 0.004 0.292 Positive
 

Pedestrian Fatalities 
Nine explanatory variables were included in the final model predicting pedestrian fatalities (Table 6).  The final 
model controlled for high-level factors related to exposure (VMT per capita), the economy (GDP) and temperature. 
With the exception of percent of workers who walk to work and GDP, all explanatory variables showed a significant 
positive association with fatality counts. The models found that an increase in the percent of workers who walk to 
work was associated with a decrease in fatality counts. GDP, however, was included in the model because it 
significantly modified the effect of VMT in urban areas: increasing urban VMT with a concurrent increase in GDP 
was associated with a decrease in pedestrian fatalities. 

Table 6. Fixed Effects Parameter Estimates of Explanatory Variables Included in the Final Model of 
Pedestrian Fatalities 

Explanatory Variables (Key Factors) Estimate p-value 

Association 
with 

Fatalities
Walk to Work (% of workers) -0.122 0.012 Negative
% Vehicles with Mass above the U.S. 90th %ile 0.121 0.002 Positive
Observed Using Hand-Held Device (% of drivers) 0.016 0.027 Positive
Population Age 65+ (% of total population) 0.151 < 0.001 Positive
VMT in Urban Areas (% of overall VMT) 0.089 0.140 Positive
Average Temperature (degrees F) 0.175 < 0.001 Positive
VMT per Capita (millions) 0.060 0.060 Positive
GDP (Billions) 0.453 < 0.001 Positive
Police per Million -0.044 0.005 Negative
Interaction effect: VMT in Urban Areas x GDP -0.116 0.003 Negative

 

Motorcycle Fatalities 
Eight variables were included in the final model predicting motorcycle fatalities (Table 7). The final model 
controlled for high-level exposure-related factors (Total VMT and registered motorcycles), economic changes 
(GDP), motorcycle registrations, and temperature. With the exception of implementing a universal helmet law and 
population density, all explanatory variables showed a significant positive association with fatality counts. The 
presence of a universal helmet law was included in the model because it significantly modified the effect of total 
VMT: the presence of a universal helmet law where there was a concurrent increase in total VMT was associated 
with decreased fatalities. 

Table 7. Fixed Effects Parameter Estimates of Explanatory Variables Included in the Final Model of 
Motorcycle Fatalities 

Variables (Key Factors) Estimate p-value 

Association 
with 

Fatalities
Statewide Universal Helmet Law (1=Yes/0=no) -0.048 0.513 Negative
Beer Consumption (gallons of ETOH/capita) 0.083 0.002 Positive
Observed Using Hand-Held Device (% of drivers) 0.021 0.008 Positive
Population Density (Population/square mile) -0.361 < 0.001 Negative
Registered Motorcycles (#) 0.111 0.001 Positive
Average Temperature (degrees F) 0.239 < 0.001 Positive
Total VMT (millions of miles) 0.437 < 0.001 Positive
GDP (Billions) 0.225 0.041 Positive
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Interaction effect: Universal Helmet Law x Total VMT -0.208 0.030 Negative
 

The models were applied to estimate the contribution of each key factor to changes in fatality counts. Table 8, Table 
9, and Table 10 present the estimated change in the number of fatalities between 2015 and 2016 for the observed 
changed in each individual key factor between 2015 and 2016, holding the other factors constant. (Note: The factor-
related contributions by this method are not additive as their effects interact) 

In general, high-level factors (i.e. VMT, GDP, Temperature) are related to the highest corresponding changes in 
fatalities (Table 8, Table 9, Table 10). Increases in non-belt use (reporting rarely belted) and drunk driving (in the 
past 30 days) were substantial and corresponded to an estimated increase of 220 and 371 occupant fatalities, 
respectively (Table 8, Table 9). The 2.6% increase in the over-65 population corresponded to an increase in 647 
occupant fatalities (Table 8) and 162 pedestrian fatalities (Table 9). The proportion of this population working has 
increased in the past decade, by 2.3% from 2015 to 2016, and corresponded to an increased 352 occupant fatalities 
(Table 8). Distracted driving, measured with the NOPUS of observed driver cell phone use, decreased and 
corresponded with a decline in vulnerable road user fatalities (49 fewer pedestrian fatalities and 60 fewer motorcycle 
fatalities). 

Improved vehicle safety design, as measured by the average IIHS score of the vehicle fleet, was the one factor that 
corresponded with a substantial decrease in fatalities; 1,325 fewer occupant fatalities. Mass discrepancy, measured 
by the percent of vehicles in the fleet whose mass is above that of the 90th U.S. percentile declined and 
corresponded with a decrease of 42 in pedestrian fatalities. 

No change, or an insignificant change, in a key factor will not play a role in driving the number of traffic deaths (e.g. 
no states changed their motorcycle helmet laws between 2015 and 2016). 

Table 8. Estimated Individual Contribution of each Key Factor in the Change in Passenger Vehicle Occupant 
Fatalities from 2015 to 2016 

Key Factor 

Change 
2015 to 

2016

Corresponding 
change in 
Fatalities 

Average IIHS Score +7.0% -1,325 
Employment Rate for Age 65+ (%) +2.3% +352 
Population Age 65+ (%) +2.6% +647 
Adults Reporting Rarely Belted (%) +6.9% +220 
Adults Reporting Drunk Driving (%) +14.7% +371 
Average Temperature (degrees F) +1.5% +223 
Total VMT (millions of miles) per Capita +1.2% +293 
GDP (Billions) +1.5% +417 

 

Table 9. Estimated Individual Contribution of each Key Factor in the Change in Pedestrian Fatalities from 
2015 to 2016 

Key Factor 

Change 
2015 to 

2016

Corresponding 
change in 
Fatalities 

Workers who Walk to Work (%) -1.9% +18 
% Vehicles with Mass above the U.S. 90th %ile -3.2% -42 
Drivers Observed Using Hand-Held Device (%) -11.5% -49 
Population Age 65+ (%) +2.6% +162 
VMT in Urban Areas (%) +0.9% +55 
Average Temperature (degrees F) +1.5% +53 
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Total VMT (millions of miles) per Capita +1.2% +27 
GDP +1.5% +74 

 

Table 10. Estimated Individual Contribution of each Key Factor in Motorcycle Fatalities from 2015 to 2016 

Key Factor 

Change 
2015 to 

2016

Corresponding 
change in 
Fatalities 

Universal Helmet Law  No change 0 
Beer Consumption (gallons/capita) +0.2% +9 
Drivers Observed Using Hand-Held Device (%) -11.5% -60 
Population Density (Population/square mile) +0.8% -2 
Motorcycle Registrations (#) +2.2% +2 
Average Temperature (degrees F) +1.5% +81 
Total VMT (millions of miles) +1.2% +99 
GDP +1.5% +45 

 

To gauge the accuracy of the models, we compared the modeled predicted 2016 fatality counts using data from 2005 
to 2015 to actual fatality counts (Table 11).  

Table 11. Modeled Predicted 2016 Fatality Counts versus Actual 2016 Fatality Counts 

Model Forecasted 2016 Actual 2016 

% difference 
(Forecasted versus 

Actual) 
Passenger Vehicles 23,102 (2.5%) 23,714 -2.5% 
Pedestrians 5,671 (5.2%) 5,987 -5.2% 
Motorcycles 5,271 (0.2%) 5,286 -0.2% 

CONCLUSION 

The models presented in this study suggest that observed increases in passenger vehicle fatality counts in 2015 and 
again in 2016 were driven by measurable changes in vehicle miles of travel (exposure) and an improving economy. 
Beyond these high-level factors, changes in the elderly population age 65 and older, the percent of this population 
employed, non-belt use, and drunk driving were associated with increasing fatality counts. However, improved 
vehicle safety design that accompanied the new vehicles as they entered the fleet substantially countered these 
effects, thereby tempering fatality increases.  

Increases in motorcycle fatalities were associated with increased motorcycle registration, overall VMT (exposure), 
and an improving economy. Among pedestrian and motorcycle fatalities, there is some evidence that other factors 
like driver distraction plays a role but could not be easily measured. 

DISCUSSION 

Newer vehicles, for the most part, receive higher IIHS ratings and NCAP scores. Therefore, IIHS average rating is a 
surrogate measure of new vehicles penetrating the fleet and the accompanying improving overall safety design. 
However, it is important to note that the attrition from the fleet of older vehicles without airbags and other safety 
features is also contributing. The other measure of average safety design, average NCAP score, had the same effect 
in the models and was collinear with the measure of average IIHS rating. Because both could not be included at the 
same time, the average IIHS rating was chosen because model fit was slightly better.  
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The method presented in this paper provides a resource to study the impact of year-to-year changes in factors known 
to impact fatalities. For vehicle manufacturers the models can be used to examine how vehicle fleet changes are 
influencing fatality counts in the context of other factors. For example, the models can be applied to estimate 
fatalities prevented if fleet turnover is accelerated given expected economic changes. This method can be further 
applied to study how fleet changes influence fatality counts in different crash segments (for example, intersection 
crashes, rural crashes) to identify opportunities for vehicle safety advancements or detailed follow-up studies.  

The models are useful to policy- and decision-makers to identify opportunities for intervention. The resulting 
models can be applied to forecast future fatality counts, given that a known set of input parameters exists, on at a 
national level or by state. For example, the model can be applied to predict the number of deaths prevented if seat 
belt use increased to 95%.  

An insignificant change, in a key factor will not contribute to a change in the number of traffic deaths.  For example, 
because there were no changes in universal helmet laws between 2015 and 2016, there was no estimated 
contribution of this key factor to fatality counts.   

Even proven effective countermeasures will not appear to have an impact on fatality counts unless their year to year 
change is significant.  For example, one might expect that the belt use rate should have a large effect on the number 
of deaths occurring.  While safety belts are proven effective in preventing fatalities, no significant change in the belt 
use rate has been observed in recent years (Enriquez and Pickrell, 2019).  However, if safety belt use rates were to 
increase dramatically to, for example, 95% from their national average of 90%, the impact would be measurable. 

The quality of these forecasting models relies on a number of critical factors.  First, the data must be available and 
consistently collected per state for the full study period.  A smaller number of training data points would degrade 
model performance.  In many cases data have become available only recently (i.e. self-reported drunk driving), 
however no historical record exists in earlier years.  Next, the homogeneity of each state becomes important for each 
factor sampled.  Since a single value represents each parameter for each state and input year, we assume that this 
value appropriately represents that condition for the entire state.  While this assumption is true in many ways, there 
are exceptions.  For example, average precipitation may provide a useful metric for smaller states while large states 
may have widely varying conditions depending on the specific region.  Depending on the population distribution, 
these region-specific disparities can be important.  A third factor that impacts the quality of models is the 
representativeness of the data.  For example, the model uses observed driver handheld device use as a surrogate for 
driver distraction.  While the use of a handheld device certainly plays a role, it is not the only factor impacting the 
likelihood of distraction while operating a vehicle.   

Finding a suitable measure for some factors was challenging and sometimes not available. In particular, measures of 
distracted driving, motorcycle helmet use, and speeding were difficult to obtain in a consistent way. 

The models generated by this study provide a resource to study the impact of year to year changes in factors known 
to impact fatalities among passenger vehicle occupants, motorcycle riders and pedestrians.  

Limitations 
An important limitation of the current study is availability of direct measures to characterize important known risk 
factors including motorcycle helmet use, distraction, drunk driving and speeding. 

In addition, in order to understand any relationship, the measure or a proxy must exist for each state and year. 
Forecasting the impact of factors that are not yet measurable is also not possible. For example, forecasting the 
impact of the newest emerging technologies is challenging because limited data exist. 

The model examines the relationship of changes in factors with changes in fatality counts. Due to the quasi-
experimental design, cause and effect cannot be inferred from the modeled relationships. 
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APPENDIX A: MEASURED KEY FACTORS TESTED AS EXPLANATORY 
VARIABLES IN THE MODELS 

CATEGORY VARIABLE SOURCE 

Weather 
Annual Precipitation National Oceanic and Atmospheric Administration 

Annual Average Temperature National Oceanic and Atmospheric Administration 

Urban/Rural 

Urban VMT (million) per Capita Federal Highway Administration (FHWA) 

VMT in Urban Areas FHWA 

Urban VMT/Total VMT FHWA 

VMT in Rural Areas FHWA 

Rural VMT per Capita FHWA 

Social 
Education Level: High School and Higher United States Census (US Census) 

Police per Capita US Census 

Policies/Laws 

Alcohol Policy Governors Highway Safety Association 

GDL - strength of policy 
Insurance Institute for Highway Safety (IIHS); strength 
based on [9] 

Universal Motorcycle Helmet Law IIHS 

Regulations 
FMUSS 214 (side impact protection) 
implemented NHTSA 

% of registered vehicles with ESC R.L. Polk U.S. Vehicle registrations 

Economy 
Mean Travel Time to Work US Census 

Gross Domestic Product Bureau of Economic Analyses 
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CATEGORY VARIABLE SOURCE 

Gas Price per Gallon Energy Information Administration (EIA) 

Poverty US Census 

Employment Rate for People 65 US Census 

Population without Health Insurance (%) US Census 

Average Gas Price per BTU EIA 

Household Income US Census 

Employment Rate US Census 

No Health Insurance US Census 

Exposure 

VMT 
FHWA (Highway Statistics: 5.4.1. Vehicle-miles of travel, 
by functional system) 

Total Population US Census 

Average Driving Minute per Capita per Day American Time Use Survey 

Number of vehicles R.L. Polk U.S. Vehicle registrations 

% Who Use Vehicle to Work (Alone) US Census 

% Who Walk to Work US Census 
Average Walking Minute per Capita per 
Day American Time Use Survey 

Population Density US Census 

Average Cycling Minute per Capita per Day American Time Use Survey 
Average Driving Minute per Day for Driver 
65 American Time Use Survey 

Total VMT (million) per Capita 
FHWA (Highway Statistics: 5.4.1. Vehicle-miles of travel, 
by functional system) 

Demographics 

Population age 65 and over US Census 

Race White% US Census 

Male Ratio US Census 

Median age of population US Census 

Car Safety 

ESC % of Vehicles on Road R.L. Polk U.S. Vehicle registrations 

Average IIHS Score 
R.L. Polk U.S. Vehicle registrations/IIHS crashworthiness 
testing 

% of Vehicles with Electronic Stability 
Control R.L. Polk U.S. Vehicle registrations 

Vehicle Age 90 Percentile R.L. Polk U.S. Vehicle registrations 

Average NCAP Score 
R.L. Polk U.S. Vehicle registrations/New Car Assessment 
Program 

Percent of Old Vehicles on Road R.L. Polk U.S. Vehicle registrations 

Percent of New Vehicles on Road R.L. Polk U.S. Vehicle registrations 

Average Vehicle Age R.L. Polk U.S. Vehicle registrations 

Vehicle Age 50 Percentile R.L. Polk U.S. Vehicle registrations 

Vehicle Age 10 Percentile R.L. Polk U.S. Vehicle registrations 

Vehicle Age 25 Percentile R.L. Polk U.S. Vehicle registrations 

Vehicle Age 75 Percentile R.L. Polk U.S. Vehicle registrations 

Vehicle Mass 
Disparity 

Difference of 10th percentile and 90th 
percentile of Mass R.L. Polk U.S. Vehicle registrations/NHTSA Safecar.com 

 % of Vehicles Below the Bottom 10% R.L. Polk U.S. Vehicle registrations/NHTSA Safecar.com 
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CATEGORY VARIABLE SOURCE 
National Mass 

 % of Vehicles Above the Top 10% National 
Mass R.L. Polk U.S. Vehicle registrations/NHTSA Safecar.com 

Average Mass R.L. Polk U.S. Vehicle registrations/NHTSA Safecar.com 
Standard Deviation of the Mass of Vehicles 
on Road R.L. Polk U.S. Vehicle registrations/NHTSA Safecar.com 
Total % of Vehicles above and below the 
top 10% and bottom 10% National Mass R.L. Polk U.S. Vehicle registrations/NHTSA Safecar.com 

Belt Use 

Self Report Rarely Belted % Behavioral Risk Factor Surveillance System (BRFSS) 

Self Report NOT Always Belted % BRFSS 

Self Report Always Belted % for Age 65 BRFSS 

Self Report Always Belted % BRFSS 

Self Report Rarely Belted % for Age 20- BRFSS 

Self Report Always Belted % for Age 20- BRFSS 

Self Report Rarely Belted % for Age 65 BRFSS 

Observed Belted Rate NOPUS 

Alcohol/Drugs 

Opioid Related Fatalities Multiple Cause of Death File, Centers for Disease Control 
Beer Consumption (gallons of 
ethanol/capita) 

National Institute of Alcohol Abuse and Addiction 
(NIAAA) 

All Beverage Consumption(gallons of 
ethanol/capita) NIAAA 
Spirit Consumption(gallons of 
ethanol/capita) NIAAA 
Wine Consumption(gallons of 
ethanol/capita) NIAAA 

% who Report Binge drinking BRFSS 

% Self Report Never Drunk Driving BRFSS 
% Self Report Drunk Driving in Past 30 
Days BRFSS 
Self Report Binge Drinking in Past 30 
Days % for Age 65 BRFSS 
Self Report Binge Drinking in Past 30 
Days % for Age 20- BRFSS 

Distraction 

Phone Subscribers per Capita FCC (Voice Telephone Services Report) Additional Data 

Phone Subscribers FCC (Voice Telephone Services Report) Additional Data 
Observed Driver Hand-held Device Use 
while driving NOPUS 
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ABSTRACT
All over the world, there are many institutional programs used to enhance the safety of vehicles. The 
NCAP is a program that assesses the safety of vehicles sold by manufacturers in order to provide 
consumers with information on vehicle safety and to induce them to produce vehicles with enough 
safety. In Korea, the KNCAP has been carried out continuously since 1999. However, the fatal rate 
from traffic accidents per 100,000 population in 2017 is 8.1, which is above the OECD average. 
Therefore, it is necessary to improve various systems, but it is also necessary to improve the crash 
assessment protocols reflecting the actual accident. The purpose of this paper is to improve the crash 
test protocols of KNCAP by analyzing the status of the serious injury in case of an accident in Korea. 
Accident data were used for the latest three years(2015-2017) in car to car accident of domestic 
insurers. Raw data shows that 9,399 cases occurred due to accidents involving more than MAIS3 + of 
occupants' injuries. Of these, 279 cases were analyzed. In the collision type, the full width impact was 
the largest at 68.5%, and the small overlap and moderate at 28.3%. The low severity with 0 failure 
depth was 2% and the center impact was 2%. Impact angle was 51.1% for co-linear, 33.3% for left 
oblique angle and 15.6% for right oblique angle. In case of overlap, moderate overlap was about 
47.9% and small overlap was about 17.5%. In the case of full width, crash extent3 + was 80.6%, 
while moderate overlap and small overlap were 36.8% and 24.3%, respectively. The collision type and 
impact angle compared to other country. 

1. Introduction

There are many systems used to enhance the safety of motor vehicles  around the world. Among 
them, the new car assessment program which is not legally binding is the most effective system under 
which the safety of motor vehicles is improved voluntarily by the vehicle manufacturers. This system 
is being employed in countries such as USA, Europe, Japan, China, and Korea. Recently, it has been 
introduced in India, ASEAN and countries in South America.  The motor vehicle safety assessment 
system tests and evaluates the safety of motor vehicles sold by manufacturers. The system also makes 
the information on the motor vehicle safety public to encourage manufacturers to make safer motor 
vehicles. Korea has implemented the KNCAP since 1999. However, the fatalities from traffic accidents 
in every 100,000 people in 2017 years is 8.1, which is still higher than that of OECD average. The 
safety of motor vehicles has been improved, but more effective measures to reduce casualties shall be 
devised. For example, some safety devices may not function as intended under the accident conditions 
other than the test conditions. It is necessary to reflect the accident conditions in real world on the 
test methods. Internationally the traffic accidents pattern has been reflected on the test methods. 
Euro-NCAP will replace  the existing offset deformable barrier frontal impact method (40% Overlap) 
with  a ca-to-car test method(a moving barrier, 50% overlap) for moderate overlap assessment under 
Roadmap 2020. In NCAP US NHTSA also announced the introduction of a car-to-car frontal oblique 
test using OMDB (Oblique Moving Deformable Barrier) based on NHTSA's 2015 RFC (Request for 
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Comments). However, in the Korean NCAP unlike those in Europe and the United States researches 
for the specific assessment details, protocols, and timeline have not been carried out yet for car-to-car 
collisions. The current domestic vehicle safety assessment is carried out under the test conditions 
simulating vehicle-to-fixed objects collisions and vehicle-to-pedestrian collisions among real world 
accidents. 
Since the introduction of KNCAP the safety of vehicles in the domestic market has been continuously 
improved so that vehicles with high safety ratings have the effect of reducing the injury severities and 
fatalities.  However, it is suspected that the safety performance may not be not fully realized due to 
the failure of some safety devices in the real accident conditions other than the assessment conditions, 
These discrepancies between assessment ratings and real world performances are posing a potential 
threat to the credibility of the safety ratings.
Therefore, it is necessary to take a careful consideration and improvement measures for vehicle safety 
in case of car-to-car accidents with high frequency in addition to car-to-pedestrians accidents and single 
vehicle accidents among real world vehicle accidents. In particular, considering the fact that car-to-car 
accidents are more frequent than single vehicle accidents from casualties' point of view among the 
victims of traffic accidents, it is necessary to investigate that the occupant protection in car-to-car 
accidents is equivalent to that in single vehicle accidents through the current assessment program. In 
this study, based on the analysis of the main accident type and injury characteristics of fatalities and 
severe injuries excerpted from vehicle accidents database, the improvement of motor vehicle assessment 
program will be proposed through feasibility study on car-to-car crash tests.

2. Contents and Methods of Investigation

For the in-depth analysis of the injury characteristics of severely injured occupants  from car-to-car 
accidents, the injury characteristics were analyzed based on accident data from insurance companies 
database between from 2015 and 2017(3 years) met the following conditions. Among frontal collisions 
and side impacts involving only two vehicles were selected and the ones with more than two vehicles 
involved were excluded. In the cases investigated, the accidents resulted in fatal or injured occupants 
with AIS 3 or higher, who had fastened their safety belts at the time of accidents. In addition, damage 
on vehicles due to collision has to be identifiable in the accidents involving only passenger vehicles. 
Analysis data were in the following Table 1. 

Category Item Explanatory Note

Scope

·Collision Type ·Frontal collision

·Occupant ·Severely Injured Occupants 
with AIS 3 or higher

·Vehicle Classification ·Passenger vehicle- 
  to-Passenger vehicle

Period ·Reported Period ·1. 1. 2015 ~ 31. 12. 2017

Contents

·Analysis of Frequent Accident Types
  → Vehicle Deformation
  → Collision Angle and Degree of 

Overlap

·Characteristics of Severely Injured 
Occupants

  → Distribution of Severe Injury 
Areas

  → Injury Types in Severe Injury 
Areas

· 279 cases in Frontal 
collision

· 311 severely injured 
occupants in frontal 
collision

Table 1. Overview of Analysis Data 

  

Figure 1. Collision Deformation Classification

  
The types of damage and the angles of collisions were classified by the Collision Deformation 
Classification (CDC) as the Figure 1, and the types of collisions and the angles of collisions were 
categorized based on detailed damaged areas and extent of damage.
The types of damage from frontal collision were classified into 5 types as Figure 2. A full frontal 
collision case is the case when both left and right side member structures, including the center, of a 
vehicle were destroyed. A moderate overlap frontal collision case is the case when either left or right 
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side member of a vehicle was damaged and also the center of a vehicle was damaged. A small 
overlap frontal collision case is the case when only either left or right side member of a vehicle was 
damaged, but the center of a vehicle was not damaged. A narrow center frontal collision case is the 
case when both left and right side member structures of a vehicle  were not destroyed, but the center 
of a vehicle was destroyed. A frontal collision case with low severity is the case where the extent of 
damage is zero regardless of the location of damage.
The degree of overlap in a partial frontal collision was defined by the step of 20% overlap after the 
front part of a damaged vehicle was divided into 5 parts vertically and laterally. The degree of overlap 
in the partial frontal collision was set as follows according to the point of the damaged part.

20% Overlap : point 2~3 or 4~5 damaged
40% Overlap : point 1~3, 2~4, 3~5 or 4~6 damaged
60% Overlap : point 1~4 or 3~6 damaged

the degree of small overlap was defined as follows.
10% Overlap: only point 1 or 6 damaged
20% Overlap: only point 1~2 or 5~6 damaged

  
The injury characteristics analysis of severely injured occupants was carried out by the gender and 
occupied seat of an occupant according to the type of deformation, collision angle and degree of 
overlap of an accident vehicle as follows. The type of deformation, collision angle and degree of 
overlap was examined according to the criteria described previously. During the analysis, severely 
injured occupants resulted from a narrow center frontal collision and a frontal collision case with low 
severity were excluded from the analysis. For injury area analysis, multiple injuries in various areas of 
single severely injured occupant were repeatedly counted in consideration of multiple compound 
injuries. For example, if one severely injured occupant sustained two injuries in the head, two injuries 
were counted as two.

3. Results of Analysis

3-1. Analysis of Deformation Characteristics of Accident Vehicles with High Frequency and Severely Injured Occupants

The type of full frontal damage(Full width) accounted for 68.5% and the type of partial frontal 
damage(Moderate overlap + Small overlap) accounted for 28.3% as Table 2. In the type of partial 
frontal damage, a similar share was observed between two sub categories. 

Types of Deformation Frequency(%)

   Full Frontal (Full width) 191 (68.5)

Partial Frontal
Moderate overlap 38 (13.6)

Small overlap 41 (14.7)

Narrow Center Frontal Collision 4 (1.4)

   Frontal Collision with Low Severity 5 (1.8)

Total 279 (100.0)

Table 2. Types of Deformation in case of Frontal Collisions with High Frequency (unit: No. of vehicles, %)  

In terms of collision angles, as Table 3, the type of frontal collision in the perpendicular direction 
accounted for 51%, the type of frontal collisions in the left oblique direction accounted for 33% and 
the type of frontal collisions in the right oblique direction accounted for 16%. 

Figure 2. Types of Frontal Collision and Definition of Overlap
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Out of frontal collisions in the perpendicular direction, the type of full frontal collisions accounted for  
64.5%,  the type of partial frontal collisions accounted for 15.2%, and the type of small overlap 
frontal collisions accounted for 20.2%. For the type of frontal collisions in the left oblique direction, 
the type of full frontal collisions accounted for 78.9%, the type of partial frontal collisions accounted 
for 12.2%, and the type of small overlap frontal collisions accounted for 8.9%. For the type of frontal 
collisions in the right oblique direction, the type of full frontal collisions accounted for 73.8%, the 
type of partial frontal collisions accounted for 14.3%, and the type of small overlap frontal collisions 
accounted for 11.9%.

Collision Angle Deformation Type Damage Area Frequency(%) Total

Co-liner Direction 

Full width Full with 89(64.5)

138
(51.1)

Moderate
Left side 14(10.1)

Right side 7(5.1)

Small overlap
Left side 14(10.1)

Right side 14(10.1)

 Sum 138(100.0)

Left oblique Direction 

Full width Left side 71(78.9)

90
(33.3)

Moderate Left side 11(12.2)

Small overlap Left side 8(8.9)

Sum 90(100.0)

Right oblique Direction

Full width Right side 31(73.8)

42
(15.6)

Moderate Right side 6(14.3)

Small overlap Right side 5(11.9)

Sum 42(100.0)

Total 270(100.0)

Table 3. Collision Angles in case of Frontal Collisions with High Frequency (unit: No. of vehicles, %)  

Note) Total No. is not included the Narrow center and Low severity cases

As comparison of the degrees of overlap in partial frontal collisions shown in the Table 4, the average 
degree of overlap in the partial frontal collisions(moderate overlap) was 47.9%, and the portions of 
40% overlap and 60% overlap were similar to each other. The average degree of in the partial frontal 
collisions(small overlap) was 17.5%, and 20% overlap accounted for the largest portion of 75.6%.

Degree of Overlap Frequency(%) Average Degree of Overlap

Moderate overlap

20% overlap 3(7.9)

47.9%
40% overlap 17(44.7)

60% overlap 18(47.4)

Sum 38(100.0)

Small overlap

10% overlap 10(24.4)

17.5%20% overlap 31(75.6)

Sum 41(100.0)

Table 4. Degree of Overlap  in case of Partial Frontal Collisions with High Frequency (unit: No. of vehicles, %)  
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Table 5. shows the results of comparison and analysis of the extent of damage according to the types 
of damage. Most full frontal collisions resulted in Extent of Damage 3 or higher, and most partial 
frontal collisions resulted in Extent of Damage 3 or less. In case of full frontal collisions, Extent of 
Damage 3 or higher accounted for 80.6%, while in case of partial frontal collisions Extent of Damage 
3 or less accounted for the majority.

Types of Deformation
Extent of Damage

Total
1 2 3 4 5

Full width
7 30 82 66 6 191

(3.7) (15.7) (42.9) (34.6) (3.1) (100)

Partial

Moderate overlap
12 12 10 3 1 38

(31.6) (31.6) (26.3) (7.9) (2.6) (100)

Small overlap
20 11 5 5 0 41

(48.8) (26.8) (12.2) (12.2) (0) (100)

Narrow center
0 3 1 0 0 4

(0) (75.0) (25.0) (0) (0) (100)

Table 5. Types of Deformation in case of Frontal Collisions with High Frequency(units : No. of vehicles, %)

 Note) frontal collision with low severity :  EXTENT 0 = 5 units

3-2 Injury Analysis of Severely Injured Occupants

The analysis of distribution of severely injured occupants according to the gender and seat of occupant 
showed that the majority of male were drivers and the majority of female were passengers. In the case 
of severely injured male occupants, 74% of occupants in the driver's seat and 14% in the passenger 
seats account for 91.7% of the occupants in the first row seats (driver's seat + passenger's seat). In the 
case of severely injured female occupants, 78.2% of severely injured female occupants were seated in 
the first row seat (driver's seat + passenger's seat), but the occupancy rate of severely injured female 
occupants in the second row seat (18.3%) was higher than that of the male. (See the Table 6.)

Gender

1st row Seat 2nd row Seat

Total
Driver' Passenger'

behind
Driver

Center
behind

Passenger

Male
125 30 1 1 10 169

(74.0) (17.8) (0.6) (0.6) (5.9) (100.0)

Female
63 48 10 1 15 142

(44.4) (33.8) (7.0) (0.7) (10.6) (100.0)

Total
188 78 11 2 25 311

(60.5) (25.1) (3.5) (0.6) (8.0) (100.0)

Table 6. Distribution of Severely Injured Occupants according to the Seat/Gender in case of Frontal Collisions with 
High Frequency(units : No. of injuries, %)

Table 7. shows the analysis of distribution of severely injured occupants according to the age of 
occupant. Severely injured adult occupants were drivers who accounted for 76.9%. Severely injured 
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adult female drivers accounted for 50.9%, while severely injured adult female passengers accounted for 
46.6%. There is little difference. For elderly people, the majority of injured occupants were male 
drivers, while the majority of old female occupants were seated in the passenger seat in the 1st and 
2nd rows. For elderly female occupants, passengers next to the driver accounted for 31.8%. Female 
occupants in the passenger seat in the 1st and 2nd rows accounted for 40.9%. 

Age
1st row Seat 2nd row Seat

Total
Driver' Passenger'

behind
Driver

Center
behind

Passenger‘

Male

Child
0 1 0 0 2 3

(0.0) (33.3) (0.0) (0.0) (66.7) (100.0)

Adult
110 22 1 1 7 143

(76.9) (15.4) (0.7) (0.7) (4.9) (100.0)

Elderly
15 7 0 0 1 23

(65.2) (30.4) (0.0) (0.0) (4.3) (100.0)

Fema
le

Child
0 1 1 1 1 4

(0.0) (25.0) (25.0) (25.0) (25.0) (100.0)

Adult
59 40 5 0 9 116

(50.9) (34.5) (4.3) (0.0) (7.8) (100.0)

Elderly
4 7 4 0 5 22

(18.2) (31.8) (18.2) (0.0) (22.7) (100.0)

Total
188 78 11 2 25 311

(60.5) (25.1) (3.5) (0.6) (8.0) (100.0)

Table 7. Distribution of Severely Injured Occupants according to the Seat/Age of Occupant in case of Frontal 
Collisions with High Frequency(units : No. of injuries, %)

 Table 8. shows the analysis of distribution of severely injured occupants according to types of 
deformation in frontal collisions. In case of a full frontal collision, chest injuries were most frequent, 
followed by low extremity injuries and head injuries. In case of a moderate frontal collision, low 
extremity injuries were most frequent, followed by chest injuries and upper extremity injuries. In case 
of a small overlap frontal collision, upper extremity injuries were most frequent, follwed by low 
extremity injuries and chest injuries. As the area of the damaged part if an accident vehicle changes, 
the behavior of occupants may also change. Due to the different behavior frequently injured areas in 
occupants shows different tendency. The chest injuries became less and less frequent from full frontal 
collision to partial frontal collision, which is considered to be correlated with the reduction in damaged 
area.  In case of upper/lower extremities, the rate of injury increased in a full frontal collision 
compared with a partial frontal collision because the safety belt could not effectively restrain an 
occupant due to yawing in a frontal collision.

Deformation
Type

head neck
back-
spine

chest
abdomin

al

upper 
extremit

y

lower 
extremit

y

full 
body

Total

Full width
43 39 5 115 2 30 63 1 298

(14.4) (13.1) (1.7) (38.6) (0.7) (10.1) (21.1) (0.3) (100.0)

Moderate overlap
6 8 0 19 0 11 22 2 68

(8.8) (11.8) (0.0) (27.9) (0.0) (16.2) (32.4) (2.9) (100.0)

Small overlap
4 10 2 11 0 17 13 0 57

(7.0) (17.5) (3.5) (19.3) (0.0) (29.8) (22.8) (0.0) (100.0)

Table 8. Severely Injured Area according to Types of Deformation in case of Frontal Collisions with High 
Frequency(units : No. of injuries, %)

The analysis of distribution of severely injured area of occupants according to the collision angle in 
frontal collisions shows that in case of a full frontal collision, the differences among the shares of 
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injured areas were little regardless of collision angles, while the shares of injured areas tend to differ 
greatly depending on collision angles in case of a partial frontal collision as Table 9.
In case of a moderate overlap frontal collision, lower extremity injuries in frontal collisions in the left 
oblique direction decreased by 12% compared with that in frontal collisions in the perpendicular 
direction; chest injuries increased by 13%; head injuries increased by 8%.
In case of a small overlap frontal collision, lower extremity injuries in frontal collisions in the left 
oblique direction decreased by 11% compared with that in frontal collisions in the perpendicular 
direction; chest injuries increased by 10%; head injuries increased by 5%.

Collision Angle head neck
back-
spine

chest
abdomin

al

upper 
extremit

y

lower 
extremit

y

full 
body

Total

Full width

perpendicula
r

22 17 1 49 0 15 33 1 138
(15.9) (12.3) (0.7) (35.5) (0.0) (10.9) (23.9) (0.7) (100.0)

oblique 21 22 4 66 2 15 30 0 160
(13.1) (13.8) (2.5) (41.3) (1.3) (9.4) (18.8) (0.0) (100.0)

Moderate
overlap

perpendicula
r

2 5 0 8 0 6 14 2 37
(5.4) (13.5) (0.0) (21.6) (0.0) (16.2) (37.8) (5.4) (100.0)

oblique 4 3 0 11 0 5 8 0 31
(12.9) (9.7) (0.0) (35.5) (0.0) (16.1) (25.8) (0.0) (100.0)

Small
overlap

perpendicula
r

2 7 1 6 0 11 11 0 38
(5.3) (18.4) (2.6) (15.8) (0.0) (28.9) (28.9) (0.0) (100.0)

oblique
2 3 1 5 0 6 2 0 19

(10.5) (15.8) (5.3) (26.3) (0.0) (31.6) (10.5) (0.0) (100.0)

Table 9. Distribution of Severely Injured Area of Occupants according to the Collision Angle in case of Frontal 
Collisions with High Frequency(units : No. of injuries, %)

The analysis of distribution of severely injured area of occupants according to the degree of overlap in 
frontal collisions shows that upper/lower extremity injuries increased as the degree of overlap 
decreased.(See the  Table 10) In case of a moderate overlap frontal collision, neck injuries decreased 
and upper  extremity injuries increased from 6.3% to 29.0% as the degree of overlap decreased. In 
case of a small overlap frontal collision, neck injuries decreased from 22% to 6% and lower extremity 
injuries increased from 12% to 50% as the degree of overlap decreased.

Degree of Overlap head neck
back-
spine

chest
abdomin

al
upper 

extremity
lower 

extremity
full body Total

Moderate
overlap

20%
0 0 0 0 0 0 5 0 5

(0.0) (0.0) (0.0) (0.0) (0.0) (0.0) (100.0) (0.0) (100.0)

40%
4 1 0 9 0 9 8 0 31

(12.9) (3.2) (0.0) (29.0) (0.0) (29.0) (25.8) (0.0) (100.0)

60%
2 7 0 10 0 2 9 2 32

(6.3) (21.9) (0.0) (31.3) (0.0) (6.3) (28.1) (6.3) (100.0)

Small
overlap

10%
1 1 0 2 0 4 8 0 16

(6.3) (6.3) (0.0) (12.5) (0.0) (25.0) (50.0) (0.0) (100.0)

20%
3 9 2 9 0 13 5 0 41

(7.3) (22.0) (4.9) (22.0) (0.0) (31.7) (12.2) (0.0) (100.0)

Table 10. Distribution of severely Injured Area of Occupants according to the Degree of Overlap in case of Frontal 
Collisions with High Frequency(units : No. of injuries, %)

As Table 11, the analysis of distribution of severely injured area of occupants according to the 
seat/gender in frontal collisions shows that chest injuries were most frequent in the occupants in the 
1st row seats while head injuries were most frequent in the occupants in the 2nd row seats. In case of 
drivers, the distribution of severely injured areas in male and female drivers were similar to each 
other. Chest injuries were most frequent, followed by lower extremity injuries and neck injuries. Head 
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injuries were least frequent. For male drivers, chest injuries(37.4%) were most frequent, followed by 
lower extremity injuries(23.6%) and neck injuries(17.1%). Head injuries(13.0%) were least frequent. For 
female drivers, chest injuries(39.3%) were most frequent, followed by lower extremity injuries(19.6%) 
and neck injuries(14.3%). Head injuries(12.5%) were least frequent. In case of passengers next to 
drivers, chest injuries were most frequent in male and female passengers. For male passengers, head 
injuries were the next most frequent, while for female passengers, lower extremity injuries were the 
next most frequent. For male passengers, chest injuries(46.5%) were most frequent, followed by head 
injuries(18.2%) and upper/lower extremity injuries(15.2). For female passengers, chest injuries(45%) 
were most frequent, followed by lower extremity injuries(24%), upper extremity injuries(21%)  and 
head injuries(4%). Head injuries were least frequent. In case of occupants in the 2nd row, head 
injuries were most frequent in male and female passengers. Chest injuries for male passengers and 
lower extremity injuries for female passengers were next highest.  For male passengers, head(35.7%) 
and chest injuries(35.7%) were most frequent, followed by neck injuries(21.4%). For female passengers, 
head injuries(31.8%) and lower extremity injuries(31.8%) were most frequent, followed by chest 
injuries(22.7%).

Occupied Seat head neck
back-
spine

chest
abdomin

al
upper 

extremity
lower 

extremity
full body Total

Male

Driver's
16 21 2 46 1 8 29 0 123

(13.0) (17.1) (1.6) (37.4) (0.8) (6.5) (23.6) (0.0) (100.0)
Passenger'

s
6 2 0 15 0 5 5 0 33

(18.2) (6.1) (0.0) (45.5) (0.0) (15.2) (15.2) (0.0) (100.0)

2nd Row
5 3 1 5 0 0 0 0 14

(35.7) (21.4) (7.1) (35.7) (0.0) (0.0) (0.0) (0.0) (100.0)

Female

Driver's
7 8 1 22 0 6 11 1 56

(12.5) (14.3) (1.8) (39.3) (0.0) (10.7) (19.6) (1.8) (100.0)
Passenger'

s
2 3 0 21 0 10 11 0 47

(4.3) (6.4) (0.0) (44.7) (0.0) (21.3) (23.4) (0.0) (100.0)

2nd Row
7 2 0 5 1 0 7 0 22

(31.8) (9.1) (0.0) (22.7) (4.5) (0.0) (31.8) (0.0) (100.0)

Table 11. Distribution of Severely Injured Area of Occupants according to the Occupied Seat in case of Full 
Frontal Collisions(Full Width) with High Frequency(units : No. of injuries, %)

Occupied Seat head neck
back-
spine

chest
abdomin

al

upper 
extremit

y

lower 
extremit

y

full 
body

Total

Male

Driver's
1 3 0 8 0 3 11 2 28

(3.6) (10.7) (0.0) (28.6) (0.0) (10.7) (39.3) (7.1) (100.0)

Passenger's
1 0 0 0 0 0 3 0 4

(25.0) (0.0) (0.0) (0.0) (0.0) (0.0) (75.0) (0.0) (100.0)

2nd Row
0 0 0 1 0 0 0 0 1

(0.0) (0.0) (0.0) (100.0) (0.0) (0.0) (0.0) (0.0) (100.0)

Female

Driver's
1 1 0 3 0 3 3 0 11

(9.1) (9.1) (0.0) (27.3) (0.0) (27.3) (27.3) (0.0) (100.0)

Passenger's
1 2 0 2 0 2 1 0 8

(12.5) (25.0) (0.0) (25.0) (0.0) (25.0) (12.5) (0.0) (100.0)

2nd Row
1 1 0 4 0 2 4 0 12

(8.3) (8.3) (0.0) (33.3) (0.0) (16.7) (33.3) (0.0) (100.0)

Table 12. Distribution of Severely Injured Area of Occupants according to the Occupied Seat in case of Moderate 
Frontal Collisions with High Frequency (units : No. of injuries, %)

The distribution of severely injured area of occupants according to the seat/gender in moderate overlap frontal 
collisions was analyzed. For the occupants in the 1st row seats, lower extremity injuries for male passengers 
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and chest and upper extremity injuries for female passengers were most frequent. For female occupants in the 
2nd row seats, chest injuries and lower extremity injuries were most frequent. (See the Table 12)
Lower extremity injuries were most frequent for both male and female drivers. For passengers next to 
drivers, lower extremity injuries were most frequent for male passengers and chest injuries, neck 
injuries and upper extremity injuries for female passengers were most frequent.
Table 13 shows that the analysis of distribution of severely injured area of occupants according to the 
seat/gender in small overlap frontal collisions were that upper extremity injuries for male passengers 
and lower extremity injuries for female passengers were most frequent among the occupants in the 1st 
row seats.
In case of male drivers, upper extremity injuries were most frequent, followed by lower extremity 
injuries and chest injuries. In case of female drivers, neck injuries were most frequent, followed by 
lower extremity injuries and chest injuries.

Occupied Seat head neck
back-
spine

chest abdominal
upper 

extremity
lower 

extremity
full 

body
Total

Male

Driver's
2 3 1 4 0 9 5 0 24

(8.3) (12.5) (4.2) (16.7) (0.0) (37.5) (20.8) (0.0) (100.0)

Passenger's
0 1 0 1 0 2 0 0 4

(0.0) (25.0) (0.0) (25.0) (0.0) (50.0) (0.0) (0.0) (100.0)

2nd Row
0 0 0 2 0 0 0 0 2

(0.0) (0.0) (0.0) (100.0) (0.0) (0.0) (0.0) (0.0) (100.0)

Female

Driver's
1 5 1 3 0 2 4 0 16

(6.3) (31.3) (6.3) (18.8) (0.0) (12.5) (25.0) (0.0) (100.0)

Passenger's
0 1 0 1 0 1 4 0 7

(0.0) (14.3) (0.0) (14.3) (0.0) (14.3) (57.1) (0.0) (100.0)

2nd Row
1 0 0 0 0 2 0 0 3

(33.3) (0.0) (0.0) (0.0) (0.0) (66.7) (0.0) (0.0) (100.0)

Table 13. Distribution of Severely Injured Area of Occupants according to the Occupied Seat in case of Small 
Overlap Frontal Collisions(Full Width) with High Frequency(units : No. of injuries, %)

4. Discussion 

It is time for a new car assessment program on which multiple vehicle accidents patterns are reflected 
to encourage manufacturer to improve vehicle safety through assessing vehicle safety in the car-to-car 
accidents which account for the majority among traffic accidents. It is expected that vehicle safety will 
be assessed in the event of car-to-car collisions under both Euro-NCAP and US NCAP. It is required 
to develop measures to strengthen the competitiveness of domestic automobile industry, in addition to 
enhance the domestic traffic safety index.
In consideration of the high fatality and severe injury rate in partial frontal collisions, the damage 
area/collision angle/speed of an assessed vehicle should be reviewed when developing a scenario for a 
new car assessment program on which the characteristics of real world vehicle accidents in Korea will 
be reflected. Specially the high severe injury rate in partial frontal collisions should be noted even 
though the extent of damage in a partial frontal collisions is lower than that of a full frontal collision. 
Because fatalities and severely injured occupants in the same occupied seat are quite different in the 
genders, various type of test dummies and occupied seats may be considered in a new car assessment 
program on which the characteristics of real world vehicle accidents in Korea will be reflected. 
In addition, in consideration of major injured areas and injury types of severely injured occupants 
resulted from car-to-car accidents were chest fractures and upper/lower extremity fractures,  It is deem 
to be necessary to establish the evaluation criteria to reduce these kinds of injuries in assessing 
impacts to the parts of a test dummy corresponding to the frequently injured areas of occupants. It is 
possible to minimize the discrepancy between the assessment and the actual accident injury reduction 
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effect by supplementing the additional parts in addition to the  parts of a test dummy used in the 
current new car assessment program in consideration of the injury characteristics of severely injured 
occupants resulted from real world car-to-car accidents.

5. Conclusion

The following conclusions were drawn from the analysis of characteristics of the severely injured 
occupants based on the database of domestic insurance companies. 
Partial frontal collisions and side impacts resulted in severely injured occupants even though the extent 
of damage was low. For partial frontal collisions, the type of 60% off-set collision co-linearly on the 
left(driver side) was most frequent.  In this type of collisions male drivers and female passengers were 
severely injured with high frequency regardless of age. Chest injuries were most frequent in the 
severely injured occupants.
Based on the results of the analysis of the car-to-car accidents in Korea, it is necessary to further 
study the standardization of the collision assessment technology which the real world accidents patterns 
can be reflected in order to secure the collision safety additionally in the new car assessment program.
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ABSTRACT 
An increasing number of driving tasks in vehicles is being taken over by automation as automated driving 
technology is developed. An important aspect in this development is the safety assessment of new functions and 
systems. Scenario-based assessment is a promising tool, but it relies heavily on the availability of realistic scenarios 
for generating test cases. 

Traditional methods take analyses from in-depth accident databases as a starting point to describe accident 
scenarios. In TNO’s StreetWise methodology, the list of critical scenarios resulting from accidentology is expanded 
with scenarios that are identified from normal every day driving dat. In this paper we describe a machine learning 
approach of automatic scenario identification in a dataset of public-road driving. The dataset together with the 
results will be made public to serve as a benchmark. 

TNO will publish a dataset containing 6000 kilometers of driving on the public road, containing information on the 
ego vehicle CAN; the GPS position; information on the objects around the ego vehicle from radar and camera; and 
road lanes and lines. Furthermore, we propose a framework for automatic scenario extraction from real-world 
microscopic driving data, including measures of safety criticality.  

Scenarios that are similar form a scenario class, currently we distinguish approximately 60 of such classes. Each 
instance of a scenario is described by a set of parameters that is specific for the scenario class. By analyzing large 
amounts of driving data, not only scenarios to fit in different classes are identified, but also the parameter values for 
each scenario instance are determined. This results in the frequency of occurrence of scenarios and the probability 
density function (PDF) for each of the scenario parameters. Metrics for safety criticality are defined based on time-
to-collision, time-headway, post-encroachment time, etc. For each case, the safety criticality is evaluated based on 
the proposed metrics. 

We have automatically identified two scenarios in the data: 1. Gap closing; 2. Cut-in of a vehicle in front of the ego 
vehicle. From the identified PDFs the nominal scenarios are identified as well as corner cases with parameter values 
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in the tail of the PDF. By changing parameter values within a realistic range around the corner cases, a check is 
made regarding their criticality.  

The two scenarios that are identified describe only a small part of the total number of kilometers driven. However, 
the bottom up approach to scenario mining described here can be extended to more scenarios in a relatively 
straightforward way, with the goal of describing the entire dataset with scenarios. 

Automatic scenario mining from driving data is an essential step towards safety validation of AD functionalities. 
TNO publishes a dataset with 6000 kilometers of public-road driving, for which we show that it is possible to 
identify critical scenarios, in addition to nominal scenarios, even if in these kind of studies critical situations are rare. 

INTRODUCTION 
Automated driving (AD) functions are considered an important tool for increasing road safety and comfort, reducing 
emissions and improving traffic flow. The increase in automation requires a different protocol for quality and 
performance assessment of vehicles than traditionally done [1][2][3]. For this, a scenario-based approach has been 
proposed [4][5]. The collection of scenarios used for defining test cases should represent and cover the entire range 
of real-world traffic situations that might be encountered by the AD system under test. In the TNO StreetWise 
methodology, scenarios are extracted from real-world microscopic traffic data, and are used to build a database 
suitable for testing and validation of automated driving functions [6]. The use of real-world scenarios for testing 
purposes requires accurate scenario extraction methods from driving data, to ensure representativeness of the 
scenario database. In order to facilitate a comparison between different scenario-mining methods, a public 
benchmark dataset would be a valuable tool.  

Several public public-road driving datasets already exist. The Oxford robotcar dataset contains data of 100 
repetitions of the same route in Oxford, UK [7]. The sensors that were used on the recording vehicle include 
multiple cameras, LIDAR and GPS, but no sensor fusion has been performed on the raw data. Hence, no object level 
data is available from this dataset. For the Next Generation Simulation (NGSIM) program1, data was collected at 
several US highways with a network of synchronized digital video cameras, from which vehicle trajectory data was 
extracted. This provides a bird’s eye view of specific portions of road. The Apollo obstacle trajectory prediction 
dataset2 contains data collected with LIDAR, cameras and GPS. The data has been turned into features that can be 
used to train a Machine Learning algorithm on the provided labels on the intention of the other road users.  

In this work we present a dataset of public-road driving for benchmarking scenario-mining algorithms. This dataset 
is available at www.tno.nl/streetwise. Unlike the previously mentioned public datasets, this dataset contains object-
level data from an in-car perspective that can be directly used to identify scenarios in the data. As a first benchmark, 
we present the results of a scalable approach to scenario mining, based on fundamental building blocks describing 
the trajectories of all road users. Two scenarios are shown as example, ‘gap closing’ and ‘cut in’. As scenario-
mining algorithms are continuously improved, progress can be measured on this public dataset. Finally, we show 
how a scenario database of driving data can be used to assess the safety criticality of the scenarios found in the data. 

METHOD 
Real-world data logging 
TNO recorded data from 20 different drivers between 25-60 years old, all of whom had their driving license for 
more than 5 years and are driving more than 5000 km per year. They drove together about 6000 km in mixed traffic, 
of which approximately half in manual mode and half in ACC mode. All driving was performed during the day time 
(from 8:30 to 17:00) under dry weather conditions. 

A dedicated specially prepared vehicle (Toyota Prius) was used for the tests. The vehicle records information from 
the following sensors: 

                                                             
1 https://data.transportation.gov/ 
2 http://data.apollo.auto/ 
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• Vehicle CAN (velocity / accelerations / yaw rate / steering wheel angle / wheel speeds) 

• Mobileye camera (object / lane information) 

• Continental-30x radar front centre, rear left, rear right 

• U-blox GPS 

• Ibeo LIDAR 

The position and viewing angle of the sensors is depicted in Figure 1. Besides these sensors also an additional 
forward-facing camera was used to record reference footage. The LIDAR has not been used in the analysis of the 
data. 

 

 

Figure 1: Field of view of the external sensors of the recording vehicle. Orange: front-looking MobilEye 
camera. Red: Continental-30x radar, front centre, rear left, rear right. Blue: Ibeo LIDAR. 

 

Data pre-processing 
The recorded data is converted to a uniform representation (the so-called world model) of the static and dynamic 
environment around the ego vehicle. In this dataset the static environment is only represented by the road markings 
of the ego lane. The lateral position of all road users is considered relative to these lanes. The output of the Mobileye 
camera is used for the road markings. This contains the type of lane marking and predicted position of the marking 
with certain confidence level.  

The dynamic traffic is modelled with a multi-target tracker that has been developed by TNO [8]. The multi-target 
tracker uses the sensor output of the Mobileye camera and the 3 Continental radars (front center, rear left and rear 
right radar). The test vehicles were also equipped with Ibeo LIDARs, but those were not used. The multi-target 
tracker fuses the sensor data and provides the position and motion of detected objects. The targets are represented as 
points. The distance between the ego vehicle and a target in front of ego vehicle is the distance between target 
vehicle rear bumper center and ego vehicle front bumper center. For the distance between the ego vehicle and a 
target behind the ego vehicle the distance between target vehicle front bumper center and ego vehicle rear bumper 
center is used. For lateral position the center of the vehicle (both ego and target) is used as reference point. 

The test drivers drove a fixed route in the region of Amersfoort in the Netherlands. The route has a length of approx. 
46 km and takes about 50 minutes driving without delays. About 55% of the distance is highway, 40% is rural and 
the remaining 5% is urban area. About 55% of the route are multi-lane uni-directional roads. The route and driving 
direction are shown in Figure 2. Every test person drove the route 6 times, 3 times with ACC and 3 times without. 
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Figure 2: The route, including driving direction, that was driven by the test drivers. 

Identification of scenarios 
In the StreetWise methodology traffic is interpreted as a sequence of scenarios, meaning that every instance of the 
data is assigned to a scenario [6]. These scenarios need to be defined by a consensus among experts in order to make 
them as useful as possible for testing. In this work we focus on two relatively straightforward scenarios: one 
scenario that is centered on longitudinal interaction between two vehicles, and one centered on lateral interaction. 
The first scenario is the ‘gap-closing’ scenario. It consists of a target vehicle in front of the ego vehicle that is in the 
same lane as the ego and decelerates. This scenario ends when the distance between the two vehicles no longer 
decreases. The second scenario is the ‘cut-in’ scenario. In this scenario a target vehicle moves from an adjacent lane 
to the ego lane in front of the ego vehicle, such that the target becomes the lead vehicle of the ego vehicle. Figure 3 
shows a graphical representation of the two scenarios. 

 

Figure 3: Left: Gap-closing scenario. Right: Cut-in scenario. 

As described in [6], we define activities as building blocks and construct scenarios by combining activities of 
different road users. Activities can fall into two categories: longitudinal and lateral. Longitudinal activities can be 
either acceleration, cruising or deceleration. Lateral activities are defined with respect to the lane and can be either 
lane following, turn (or lane change) left or turn (or lane change) right. These 6 activities cover all the allowed 
movement of a vehicle on the road and are sufficient to describe any possible trajectory. The activities are identified 
in the data for the ego and all the targets that are detected around the ego. The trajectory of a road user is described 
by at least two (i.e. longitudinal and lateral) activities at all times. 

Scenarios are found by combining activities with the relative position and speed of every target. We use template 
matching on a graphical network to efficiently find the scenarios in the dataset. In this bottom-up approach, given 
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the right template to search for, any scenario can be detected straightforwardly without the need to write a separate 
algorithm for every scenario. The activity detection and scenario mining algorithms will be detailed in a forthcoming 
publication. 

Identification of critical scenarios 
For all scenarios the minimal set of parameters needed to describe the activities and the scenarios is stored. This 
includes a full description of the time evolution of every activity of the ego and every target, the relative positions of 
the targets with respect to the ego, the relative speeds of the targets with respect to the ego, and the absolute position 
of the ego. This set of parameters can be used to determine the safety criticality of the scenarios found in the data. 
Many possible safety indicators have been proposed [9][10]. As an example, we consider in this work the following 
safety criticality indicators: 

• Start longitudinal distance [m]: the longitudinal distance between the ego and the target at the start of 
the scenario. 

• Maximal deceleration during the scenario [m/s2]. 

• Minimal Time-To-Collision (TTC) [s]: the time to collision is the time it takes for the rear vehicle to 
cover current longitudinal distance between rear and front vehicle, also taking into account the possible 
distance covered by front vehicle. The TTC is computed in the following way:  
TTC [s] = inter-vehicle-distance [m] / (rear vehicle velocity – front vehicle velocity) [m/s].  

• Maximal lateral speed during the scenario [m/s]. 

 

RESULTS 
We have applied the scenario identification algorithms to the 6000 km of public-road driving. In this section we 
describe the results and give an example of the analysis of criticality of a scenario based on the safety criticality 
indicators described in the previous section. 

Braking in front 
We have identified 1460 braking in front scenarios in the data. An example of the relevant signals for this scenario is 
shown in Figure 4. The target vehicle has initially a higher speed than the ego, before it starts decelerating. About 1 
second after the longitudinal distance starts the decrease, the ego vehicle decelerates until the distance between the 
vehicles is 8 meters, at which point the target accelerates again.  

 

Figure 4: Left: Longitudinal speed as function of time for the ego and the target. Right: Inter-vehicle distance 
as function of time. 

By comparing the safety criticality parameters of this scenario with the probability density functions (PDF) of these 
parameters constructed from all scenarios in the data, the relative safety criticality of this scenario can be assessed. 
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In Figure 5 the longitudinal distance at the start of the scenario, the maximal deceleration of the target and the 
minimal TTC are shown.  

 

Figure 5: Probability densities of safety indicators for the braking-in-front scenario. Solid line is a univariate 
non-parametric fit of the histogram with Kernel Density Estimation using a Gaussian kernel. Vertical lines on 
the x-axis denote the data points. The red vertical line indicates the example shown in Figure 4. Left: 
Longitudinal distance at the start of the scenario. Centre: Maximal deceleration of the target during the 
scenario. Right: Minimal time to collision during the scenario. 

The maximal deceleration of the target is among the highest found in the dataset. However, due to the relatively high 
inter-vehicle distance at the start of the scenario, this does not result in a safety critical scenario. This is reflected in 
the minimal TTC that is above 2 seconds. The drawback of only using the TTC for safety analysis is that it is not 
always defined, even in cases where the target might still be dangerously close to the ego [9]. This analysis shows 
that it is not sufficient to rely on a single parameter to judge the safety criticality of a scenario. 

Cut in 
We have identified 403 cut-ins in the dataset.  An example of a cut-in scenario with the relevant signals is shown in 
Figure 6. The lateral speed of the target increases at the start of the scenario indicating the lane change. Although the 
longitudinal speed of the target is initially much lower than that of the ego, the target quickly accelerates and as a 
result the longitudinal distance is never less than 17 meters during the scenario. 

 

Figure 6: Left: Lateral speed as function of time for the ego and the target. Centre: Longitudinal speed for the 
ego and the target. Right: Inter-vehicle distance as function of time. 

To determine the safety criticality of this example, in Figure 7 we show the PDFs of 3 safety indicators. These 
indicators show that even though the lateral speed of the target was relatively high and the longitudinal distance at 
the start of the scenario was below average, this example is not safety critical, as the minimal TTC of more than 5 
seconds shows. However, as noted earlier, relying only on TTC for defining safety criticality has severe drawbacks. 
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Figure 7: Probability densities of safety indicators for the cut-in scenario. Solid line is a univariate non-
parametric fit of the histogram with Kernel Density Estimation using a Gaussian kernel. Vertical lines on the 
x-axis denote the data points. The red line indicates the example shown in Figure 6. Left: longitudinal 
distance at the start of the scenario. Centre: Maximal lateral speed of the target during the scenario. Right: 
Minimal TTC during the scenario. 

CONCLUSIONS AND DISCUSSION 
We have presented a dataset of driving on the public road that consists of 6000 kilometers of a mix of highway 
(55%), rural (50%) and urban (5%) driving and contains information on the ego vehicle CAN; the GPS position; 
information on the objects around the ego vehicle from radar and camera; and road lanes and lines. The dataset will 
be made publicly available at www.tno.nl/streetwise.  

In addition, we have presented the results of a bottom-up approach to scenario mining in this dataset. By first 
detecting activities in the data that serve as building blocks, scenarios can be identified in the data in a scalable 
manner. With the input of experts about what a certain scenario entails, a template of the scenario can be defined 
that can immediately be used in the scenario mining algorithm to extend the scenario catalogue. The two scenarios 
described in this work only describe a very small portion of the data, but we expect to add more scenarios in the near 
future, working towards the goal of assigning every instance of data to at least one scenario.  

Finally, we have presented a method for determining the safety criticality of scenarios based on the probability 
density functions of a set of safety indicators. By comparing where different safety indicators are in the distributions 
of all scenarios, the safety criticality of the scenario can be quantified. The dataset presented in this paper is too 
small for a thorough statistical analysis and does not contain any critical scenarios, we plan to extend the analysis 
with more data in the future. 
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ABSTRACT 
 
NASS 1993-2015 was queried for frequency of exposed vehicles with belted driver injuries separated by injury 
severity and vehicle model year. Vehicle model-years were aggregated by 3 model year groupings – 1985 -1994; 
1995-2000; 2001-2015.  These percentages of the crash exposed populations for the 3 groups were: 27%, 34% and 
39%.  The total exposed population was 27,347,705.  The total and Mean AIS 3+ HARM for each model year 
grouping was calculated for each crash mode – frontal, near-side, far-side, rear and rollover.  Changes in total AIS 
3+ HARM distribution and Mean AIS 3+ HARM by crash mode and model year grouping were reported. 

The largest source of AIS 3+ HARM to belted drivers in the 2001-2015 NASS population remains the frontal crash 
mode.  Near-side and rollover injury rates have dramatically decreased in recent model years.  Frontal and far-side 
crash mode injury rates have decreased slightly and rear has remained relatively constant, but at a low injury rate.  

The data suggests that for light trucks, the near-side Mean AIS 3+ HARM has increased during the 2001-2015 
model years. However, the level remains below that of passenger cars which have experienced dramatic reductions 
in near-side Mean AIS 3+ HARM during the same period. 

BACKGROUND 

The analysis to follow examines vehicle safety trends based on changes to the HARM that was present in groupings 
of motor vehicles from three successive time periods.  The concept of HARM was introduced in a landmark paper 
by key NHTSA staff [Malliaris, 1982]. A frequent alternative to the use of HARM is to categorize all severe injuries 
greater than AIS 3 in a single group labeled AIS3+ injuries.  An issue with this categorization is that the AIS 3+ 
population is overwhelmed by AIS 3 injuries and the AIS 4+ population is not given increased priority.  
Alternatively, the HARM weighting scheme is applied to injuries of different severity based on the average cost of 
the injury.  This injury weighting system has the advantage of increasing the priority for preventing the most severe 
injuries. 

The mean HARM is defined as the total HARM for a grouping divided by the exposure for that grouping.  The mean 
HARM is a measure of the combined injury risk and has been widely used to conduct benefits analyses. The mean 
HARM is a weighted injury risk and is useful for determine how the safety has changed. HARM and mean HARM 
were used extensively at NHTSA and elsewhere in the 80’s and 90’s to assess priorities for safety systems.  GM 
Australia used HARM calculations in designing the first air bag introduced in Australia and the Australian Ministry 
of Transport used HARM to establish frontal and side impact regulations [Fildes, 1992]. 

The analysis in this paper follows the methodology of an earlier analysis by Eigen [Eigen, 2007].  However, the 
Eigen analysis examined HARM to injured body regions and, therefore, considered all of the multiple injuries that 
were coded for each individual.  The present analysis uses the Malliaris methodology and considers only the most 
severe injury to each occupant. 
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. 

In 2012, NHTSA stopped doing reconstructions for NASS/CDS included vehicles 10 years old and older at the time 
of the crash.  For that reason, even though the vehicles would be stored in the dataset, the general area of damage 
(GAD) and principal direction of force (PDOF) were not computed for these vehicles.  These components of the 
collision deformation classification (CDC) were used in this analysis to categorize cases into crash modes. 
Consequently some of the very oldest vehicles were excluded from the counts by crash mode for crashes occurring 
in 2012 and later. 

Another limitation of this longitudinal HARM analysis is that it assumes that the mean crash severity has not 
changed with model year. 

METHODS AND DATA SOURCES 

The source for exposure and injury data was the NASS/CDS (National Automotive Sampling 
System/Crashworthiness Data System) years 1993 to 2015.  NASS/CDS is a weighted estimate of tow-away crashes 
occurring in the United States.  The NASS/CDS weighted data contains approximately 59 million drivers of 
passenger cars, SUV’s, passenger vans or light trucks (pickups) who were exposed to crashes.  NASS/CDS data 
were disaggregated by vehicle model year and crash mode.  Since this study focused on the safety changes for belted 
drivers, only vehicles with belted drivers were included.  The resulting exposed population of belted drivers 
including those with unknown injury was 27,347,705.  

The resulting data permitted the assessment of changes in injury distributions and rates by model year, crash mode 
and body region for belted drivers.  The front, side and rear crash mode categories excluded all rollovers.  The 
rollover crash mode contains all rollovers including those with planar impacts as an earlier or later event.  

The HARM calculations applies a weighting factor to each AIS 3+ injury in the database.  The weighting factor is 
proportional to the cost of the occupant’s most serious injury. In general, minor and moderate injuries (AIS 1 and 2) 
are high frequency, events that tend to cloud the analysis of serious injury reduction by safety systems.  For this 
reason, AIS 1 and 2 injuries were excluded from the AIS 3+ HARM calculations.  The AIS 3+ HARM, measured in 
equivalent fatalities, was based on NHTSA’s data on average cost of injuries. The equivalent fatality measurement is 
obtained by normalizing the average cost of a given injury by the cost of a fatality.  The average cost of each injury 
severity was obtained from a Table E-1 in the 1995-1997 NASS/CDS Summary [NHTSA 2001].  The injury cost 
values are: MAIS 3, $98,011; MAIS 4, $221,494; MAIS 5, $697,533; and MAIS 6, $822,328.  

In order to examine how the HARM content has changed with model year, it is necessary to examine how the injury 
rate or some equivalent factor has changed.  The rate of AIS 3+ injuries is a commonly used injury risk factor.  For 
the 1985 to 2015 population of interest the distribution of AIS 3, 4, 5 and 6 was 74%, 18%, 8% and 2%, 
respectively.  When HARM weights are applied, the distributions become: 40%, 22%, 29% and 9%.  By applying 
HARM weighting, the influence of AIS 3 injuries is reduced and the more severe injuries are given added priority. 
The Mean AIS 3+ HARM per exposed occupant provides an injury rate similar to the AIS 3+ rate but with more 
priority on the AIS 4+ injuries.  

The Mean HARM for each category of interest was calculated by dividing the HARM suffered by drivers by the 
number of drivers exposed to that category.  The Mean HARM results were multiplied by 100 to simplify the 
presentation. 

The total and mean AIS3+ HARM for each model year grouping was calculated for each crash mode – frontal, near-
side, far-side rear and rollover.  The data was further disaggregated by vehicle class – passenger cars (PC), sport 
utility vehicles (SUV), light trucks (LT) and minivans (MV).  The distribution of belted drivers by vehicle class was: 
PC-66%; SUV-16%; LT-11% and MV-7%.  Since the entire populations of LT, SUV and MV constituted about one 
third of the vehicle population and they were combined in a single group.  Changes in total AIS 3+ HARM 
distribution and Mean HARM by crash mode, model year grouping and vehicle class were computed and reported. 
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RESULTS  

Vehicle model-years were aggregated by 3 model year groupings – 1985-1994; 1995-2000; 2001-2015. The 
NASS/CDS was queried for all injuries by AIS including AIS 0 (no injury) and unknown injury. This total 
population was 27,347,699.  The total AIS 3+ HARM for the three model year groupings were 27%, 34% and 39%.  
The total AIS 3+ HARM for each model year grouping was calculated for each crash mode – frontal, near-side, far-
side, rear and rollover.  Changes in total AIS 3+ HARM distribution and Mean AIS 3+ HARM by crash mode and 
model year grouping were reported. 

Figure 1 shows the total AIs3+ HARM distribution by crash mode and how it has changed with the model year 
groupings.  The percentages for each model year grouping add to 100%, consequently the Figure shows the 
distribution for each model year grouping but not the total content for that group.  

The changes in Mean AIS 3+ HARM by Crash Mode and Model Year Groupings are displayed in Figure 2. 

 

Figure 1. Distribution of Restrained Driver AIS 3+ HARM by Crash Mode and Vehicle Model Years 

 

  

Figure 2. Distribution of Restrained Driver Mean AIS 3+ HARM by Crash Mode and Vehicle Model Years  
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Table 1 shows how the distribution AIS 3+ HARM has varied among vehicle types for the three vehicle model year 
groupings.   

Table 1. 
Distribution of Belted Drivers and AIS 3+ HARM by Vehicle Classes and Model Year Groups 

  Pass Car Lt Truck, SUV, Van 

Model Years Drivers HARM Drivers HARM 

1985-1994 67.1% 71.7% 32.9% 28.3% 

1995-2000 68.0% 71.1% 32.0% 28.9% 

2001-2015 63.7% 67.2% 36.3% 32.8% 
 

Table 2 shows how the distribution mean HARM has varied among vehicle types for the three vehicle model year 
groupings. 

 

Table 2. 
Belted Driver Mean AIS 3+ HARM by Crash Mode and Model Year Groups for Passenger Car and Light Truck, 

SUV and Van Groupings 

 

 

DISCUSSION 

Figure 1 shows that the largest source of AIS 3+ HARM to belted drivers in the 2001 and later NASS population 
remains the frontal crash mode. Figure 2 indicates that the reduction in Mean AIS 3+ HARM has been relatively 
small for frontal crashes. Table 2 shows that for frontal crashes, most of the reductions in Mean AIS 3+ HARM have 
been in vehicles other than passenger cars.  

Figure 2 shows that near-side and rollover injury rates have dramatically decreased for recent vehicle model years.  
Frontal and far-side crash mode injury rates have decreased slightly and rear has remained relatively constant, but at 
a low injury rate.  

Table 1 permits the comparison of belted driver exposure and total AIS 3+ HARM distributions by crash mode for 
the three model year groupings.  Each row adds to 100%, so the extent of safety improvements cannot be determined 

Model Year Frontal Near Side Far Side Rollover Rear
1985-1994 0.275 0.413 0.241 0.445 0.065

1995-2000 0.242 0.407 0.245 0.720 0.026

2001-2015 0.208 0.749 0.192 0.701 0.050

Average 0.236 0.547 0.220 0.647 0.047

Model Year Frontal Near Side Far Side Rollover Rear
1985-1994 0.272 1.377 0.319 0.958 0.111

1995-2000 0.263 1.154 0.288 1.204 0.126

2001-2015 0.265 0.804 0.281 0.971 0.135

Average 0.266 1.081 0.294 1.058 0.126

Lt Truck, SUV, Van

Pass Car
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from this table.  It may be noted that passenger cars still comprise the largest fraction of vehicles in the NASS/CDS 
– 63.7% in the 2001-2015 model year grouping.  They also account for 67.2% of the total AIS 3+ HARM. 

Safety initiatives that may have influenced the side crash mode improvements include the IIHS side impact rating, 
the NHTSA FMVSS 214 upgrade, and widespread incorporation of air curtains.  The changes to comply with 
standards may have been more extensive for cars than for light trucks.  The reason for the increase in near-side 
Mean AIS 3+ HARM for the non-passenger car category cannot be explained from the data in this paper.  However, 
the near-side Mean AIS 3+ HARM for the combined group of light truck, SUV and van was lower than the 
passenger car near-side Mean AIS 3+ HARM. 

For rollovers, the large reduction in Mean AIS 3+ HARM occurred in both vehicle groupings. Safety initiatives that 
may have influenced rollover improvements include the roof strength rating by IIHS, FMVSS 216 upgrade, 
voluntary incorporation of air curtains that function in rollover and widespread introduction of electronic stability 
controls. 
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ABSTRACT 

Crash data are essential for the development and introduction of new of active safety systems. At first, the target 

population of a new system is evaluated to understand the situations in which the system shall become active. The 

respective crashes are then analyzed and requirements towards the system development are derived. Finally, an 

effectiveness evaluation validates the potential benefit of the system in real-world crashes. 

 

Multiple in-depth databases are available for different regions of the world. They are generally based on different 

crash collection and data coding methods. Thus, comparable data analysis is hard to achieve. This is however 

necessary for a systematic worldwide approach towards reaching “Vision Zero”. 

 

Crash scenarios describe the scene of the crash including the participants and their respective actions and 

intentions. They are the basis for developing sensor-based active safety systems. 

 

The paper discusses possibilities of analyzing in-depth crash data and deriving harmonized crash scenarios. 

Different databases and their limitations are considered, and a scenario catalogue is proposed. 

 

This catalogue will enable various stakeholders to compare and analyze crash scenarios of different regions and 

countries. The catalogue serves as a new and efficient tool to enhance the policy making for vehicles and the 

development of safety technology to drive “Vision Zero” worldwide. 

 

INTRODUCTION 

Crash data are needed to evaluate the benefit of safety systems in real-world crashes. The field-of-action is 

analyzed in which the system can become active to avoid or mitigate crashes, and essential requirements for the 

system development are derived. Additionally, the potential effectiveness of the safety system within its defined 

field-of-action is evaluated. For both development phases, a classification of crashes based on common 

characteristics, before and during the collision, is needed. Such common characteristics can be the trajectories of 

crash participants or the actual collision geometrics. 

 

To classify traffic crashes, a set of pre-defined crash scenarios can be used. The commonly used terms scene, 

situation and scenario differentiate by the added level of detail. A scene describes all players and their local and 

dynamic properties within the surrounding environment. A situation additionally includes goals and values of the 

players. Besides the properties of the scene and the situation, a scenario also contains actions of the players and 

other decisive events [1]. Generally, a crash scenario describes the course-of-events that lead to a traffic crash, 

based on intentions and movements of the participants and other events and circumstances, at the scene and within 

the environment of the crash, and including the collision outcome. Thus, crash scenarios are well-suited for the 

description and definition of a safety system. 

 

Vehicle safety systems are divided into primary, secondary and tertiary systems, with active safety systems 

(ADAS) addressing the primary safety by performing driver warnings and active interventions in the vehicle 

dynamics. This is based on a critical assessment due to ego kinematics data and object information provided by 
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environment sensors. Therefore, a classification of crashes into crash scenarios, that are to be used for ADAS 

development, should be done using common sensor-relevant properties in the pre-crash phase. These are mainly 

the positions and movement directions of the crash participants. 

 

Crash types describe the conflicts that lead to traffic crashes. They are generally represented by pictograms which 

show the first conflict between two traffic participants, regardless whether other participants are involved. Crash 

types are used to systematically classify and group traffic crashes. Each crash is classified by the respective crash 

causer and non-causer. The crash types are partly characterized by a very high level of detail [2]. Due to this 

segmentation they are generally unfavorable to represent the overall crash occurrence in a compact way. 

 

This paper shows a method to cluster crash types into crash scenarios, considering characteristics and limitations 

of active safety systems. The focus shall be on the usability of the defined crash scenarios during the development 

of active safety systems. A scenario catalogues is proposed based on the Cyclist-AEB Testing System (CATS) [3]. 

The method is demonstrated using in-depth databases from four of the biggest markets worldwide (USA, Germany, 

China, Japan). As an example, traffic crashes between passenger cars and motorcycles are analyzed and visualized. 

 

METHOD 

Active safety systems prevent crashes by direct or indirect intervention in the longitudinal or lateral vehicle 

dynamics based on sensor information in the pre-crash phase. A classification of traffic crashes that is based on 

the crash type definition is therefore particularly suitable for defining the field-of-action for an ADAS. 

 

For this paper, the authors used data from USA, China and Japan. Depending on the database used, the authors 

were able to identify variables which classify the crash configuration and are suitable for clustering. Table 1 gives 

an overview of the databases and the respective variables used for the scenario generation. 

 

Table 1. 

Databases used for the analysis and the respective variables for scenario generation 

 

Database Country Variables Reference 

GIDAS Germany UTYP, UTYPA, UTYPB [4] 

FARS USA ACC_TYPE, PEDCTYPE, 

BIKECTYPE 

[6] 

ITARDA Japan SIP-code [7] 

CIDAS China UTYP, UTYPA, UTYPB [5] 

 

The GIDAS database describes the three-digit crash type UTYP for each recorded crash and classifies the two 

participants in the causal conflict as UTYPA and UTYPB. In general, the causing crash participant is coded as 

UTYPA. The exception are crashes with pedestrians, who are always coded as UTYPB regardless of the question 

of guilt. Based on the parameters UTYP, UTYPA and UTYPB, the crashes are clustered into crash scenarios. 

 

In [8] the methodology to derive a scenario catalogue based on the GIDAS database has been extensively 

documented. Each step of the methodology is almost exactly applicable to the data found in CIDAS and ITARDA 

database. The authors propose a scenario mapping for the ITARDA data in Appendix 1. An example for the 

ITARDA data is given in Figure 1. Note that scenario C1 describes crossing scenarios from nearside, thus left-

hand driving in Japan must be considered. 
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Figure 1. Example of scenario C1 using SIP code an ITARDA data 

 

The FARS database differs in many ways from the previously mentioned databases (GIDAS, ITARADA, CIDAS). 

Therefore, in this paper the authors propose a methodology to derive a scenario catalogue based on the FARS 

database. Figure 2 describes the necessary steps of the method when using FARS. In the following text, the authors 

are using the terminology of FARS variable as described in Appendix 2. 

 

 

 

Figure 2. Generation of scenarios based on FARS data 

 

Introduction of a new variable in FARS 

 

The FARS database describes the type of crash at the level of the vehicle for each of the motorized vehicles. It 

does not contain a causal conflict and it does not contain a participant variable equivalent to the GIDAS data. A 

comparison of the database hierarchies of both GIDAS and FARS is visualized in Figure 3. 

 

 

 

Figure 3. Comparison of GIDAS and FARS database hierarchies  
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For instances, in GIDAS, a conflict between a vehicle and a pedestrian is classified as a crash between two 

participants. In contrast, for FARS this would be considered as a single crash given that only one motorized vehicle 

was involved. To harmonize the data and to be able to apply the proposed scenarios found in [8], one of the primary 

goals was the introduction of a “participant” layer in the FARS data, which takes the number of the vehicle and 

the number of the pedestrian/bicyclist in a crash as an input, and then maps them into a participant number. 

To this end we merge the person and vehicle data sets. Then for each state cases, the following equation is 

proposed, and it gives a solution to this problem. 

 

𝑃𝑎𝑟𝑡𝑖𝑐𝑖𝑝𝑎𝑛𝑡 𝑁𝑢𝑚𝑏𝑒𝑟 = {
VEH_NO (num. of vehicle), 𝐼𝑓 VEH_NO ≠ 0  
𝑚𝑎𝑥(VEH_NO) + 𝑃𝐸𝑅_𝑁𝑂, 𝐼𝑓 VEH_NO = 0 

  (Equation 1) 

For the Equation 1, suppose a State Case with n Vehicles, {𝑉1, 𝑉2, . . . , 𝑉𝑛}, and Persons, {𝑃𝑗
𝑘} for k in {0,1, . . , 𝑛}, 

where 𝑃𝑗
𝑘 represents the Person j in the Vehicle k; if k = 0, the Person is a Pedestrian or Bicyclist. 

 

It follows from the above equation that the participant number is the same for the vehicles.  We do not consider 

the case where k, j = 0, since this case reduces to a conflict among motorized vehicles. For k =  0, the 

pedestrians/bicyclist case, that is {𝑃𝑗
0}1≤𝑗≤𝑚, the participant number is j + n for all the j, as n corresponds to the 

maximum number of vehicles. Hence, the total number of participants is given as follows. 

 

#{𝑃𝑗
0}1≤𝑗≤𝑚 +  #{𝑉1, 𝑉2, . . . , 𝑉𝑛}  =  𝑚 + 𝑛  (if j≠ 0) (Equation 2) 

A visualization of the above described process can be found in Figure 4. 

 

 
 

Figure 4. Generation of the participant variable from the number of vehicles and pedestrian. 

 

Table 2 shows the above visualized process for a specific example taken from FARS 2015.  

 

Table 2. 

Example for the introduction of a new variable in FARS 

 

ST_CASE VEH_NO PER_NO PART_NO 
10712 1 1 1  
10712 2 1 2 
10712 0 1 3 (2+1 = max (VEH_NO)+PER_NO) 
10712 0 2 4 (2+2) 
10712 0 3 5 (2+3) 
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Identifying the participants with the first collision 

The next step is the identification of the participants with the first collision in a crash to apply the proposed 

scenarios. Since the authors could not identify a variable indicating the participants directly, this information was 

obtained using different steps. We select the first two participants in the crash using the lowest possible number in 

the event variable, EVENTNUM, from the VEVENT data set. 

 

If the first participants are vehicles, we use the VNUMBER1 and VNUMBER2 variables to infer the causal 

conflict. The limitation with this approach is that this field is only applicable when the event is a collision between 

two motor vehicles. 

 

If the first participants are a vehicle and pedestrian/bicyclist, we use, depending of the case, PEDCTYPE and 

BIKECTYPE for the analysis. One of the limitations with this approach is the lack of information to get a complete 

classification, particularly on the direction of travel of the pedestrian and cyclist. Thus, if there is a doubt about 

who the causer of the crash could be, the authors assume that the motorized vehicle is the causer of the crash. 

However, this is regardless of the question of who the (legally) guilty participant of a crash is, like it can be found 

in GIDAS. The overall process is visualized in Figure 5. To see our assumptions for the cause conflict in the 

vehicle/pedestrian and vehicle/bicyclist conflict, see Table 2 and Table 3. 

 

 

 

Figure 5. Identifying participants with the first collision in the crash. 
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Table 3. 

PEDCTYPE indicates pedestrian causation in vehicle/pedestrian conflict 

 

PEDCTYPE Title Description 

160 Pedestrian Loss of Control is used when the pedestrian stumbled, fell or rolled into path 

of a vehicle due to surface conditions, medical issue, blackout 

or unconsciousness, alcohol or drug impairment, falling 

asleep, or other mishap. 

313 Lying in Roadway is used when the pedestrian is lying in the roadway when 

involved with a collision with a motor vehicle. This includes 

someone sitting, getting up, asleep/unconscious, kneeling, etc. 

742 Dart-out is used when the pedestrian walked or ran into the roadway 

and was involved in a collision with a vehicle where the 

driver's view of the pedestrian was blocked until an instant 

before impact. A dart-out can only occur if there is some 

documented visual obstruction (e.g., parked vehicle, building 

or vegetation). 

 

 

Table 4. 

BIKECTYPE indicates bicycle causation in vehicle/bicycle conflict 

 

BIKECTYPE Title Description 

114, 115, 116 Bicyclist Turning 

Error 

is used when the bicyclist made a left turn/right at an 

intersection or a commercial driveway, cut the corner and 

entered the opposing traffic lane (travel lane, bike lane, paved 

shoulder, parking lane) occupied by the motorist.  

122, 123, 124 Bicyclist Lost 

Control 

is used when the bicyclist lost control due to mechanical 

problems, alcohol, drug impairment, surface condition, 

improper breaking, etc. 

142,153, 311, 312, 

313, 318, 319 

Bicyclist Ride-out is used when the bicyclist rode from a driveway access into 

the path of a motor vehicle 

155 Bicyclist Ride-

Through 

is used when the case materials indicate that the motorist had 

the right-of-way and the bicyclist did not stop at a sign (stop 

or yield) or flashing light-controlled intersection. 

156, 157, 159 Bicyclist Failed to 

Clear 

is used when the bicyclist entered the intersection on green, 

did not clear the intersection before the signal changed for the 

cross-street traffic giving those operators the right-of-way, 

and was involved in a collision with a vehicle whose view 

was not obstructed by standing or stopped traffic 

250 Wrong way/Wrong 

side 

is used when the bicyclist was traveling the wrong way on a 

one-way roadway or on the wrong side of a two-way roadway 

and collided with a motor vehicle. 
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Applying the scenario catalogue to FARS 

After these steps, we have a dataset which satisfies all the premises to apply the proposed crash scenarios.  An 

example of the catalogue mapping is shown in Figure 6. For each of the crashes, the solid red point represents the 

participant to which the scenario “C1” is attributed. Notice that only one of the involved vehicles belongs to the 

scenario. 

 

Passing the variables in Table 1 of the processed data through the mapping in Appendix 3 results in a list of 

scenarios for a comparison with other regions. 

 

 

 
Figure 6. Mapping crash types for scenario “C1” as defined in [8] 

 

RESULTS 

FARS describes 92 different crash types for motorized vehicles (ACC_TYPE), 56 for pedestrians (PEDCTYPE) 

and 78 for bicyclists (BIKECTYPE). This totals more than 220 crash types to describe the overall traffic crashes 

in the USA. Using a proven methodology [8] this paper shows that with slight modifications for the FARS database 

a mapping of nearly all FARS crash types to an existing harmonized pre-crash catalogue is possible.  

This mapping allows for a reduction of the overall number of crash type categories from over 220 to 22 (-90%). 

For Japan this reduction is even greater since there are currently 255 SIP-Codes defined in ITARDA (-91%). As 

for Germany and China there are almost 300 crash types (UTYP) defined in the database, which means a reduction 

of about 92%. The complete overview of the mapping for the ITARDA variable SIP-Code and the FARS variable 

ACC_TYPE can be found in Appendix 1 and Appendix 3, respectively. The mapping for GIDAS (UTYP) has 

already been published in [8]. 

Besides reducing the number of categories, another benefit of the harmonized pre-crash scenarios can be found in 

the comparability of traffic crashes between countries, regions, databases, etc. The authors are not aware of any 

studies that have shown a practical mapping between more than two databases up to this point in time. 

To demonstrate the practicability of the harmonized pre-crash scenarios, crashes between passenger cars (including 

light trucks) and motorcycles were analyzed across four different databases. For this example, the scenarios are 

clustered further into bundles to simplify the visualization and to allow a better comparability. In Table 5, the 

scenario bundles are displayed. 
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Table 5. 

Scenario Bundles 

 

Turning 

farside 
Crossing Runup Rear 

Lane 

Change 

Oncoming 

same 

Oncoming 

adjacent 

  
    

 

 

      

 

  

 

 

  

 

 

 

 

 

  

 

 

  

 

  

 

 

     

 

From the point of view of the cars and the motorcycles, the complete accident occurrence can be presented using 

the proposed scenario bundles. This shows how the scenario catalogue can be applied to various participants types. 

In Figures 7 and 8 both, the cars and the motorcycles are depicted in the role of the ego vehicle. 
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Figure 7. Car perspective: Ego is car, object is motorcycle 

 

 

 

Figure 8. Motorcycle perspective: Ego is motorcycle, object is car 

 

Appendix 4 gives an overview of all scenarios for crashes with car vs. motorcycle participation in four countries 

(Germany, USA, China, Japan). 

 

At this level of the analysis of traffic scenarios it is already possible to derive the most relevant scenarios for a 

specific crash constellation. In the example above, “Crossing” scenarios are the most relevant in all four crash 

databases with “Turning farside” scenarios as second most relevant (Figure 7). Looking from the motorcycle 

perspective at the same crashes, “Crossing” followed by “Oncoming same” scenarios are the most relevant. 

 

Following this high-level analysis, which can be used for identifying for example consumer test scenarios, data 

analysts can also take a deeper dive into the existing data to provide input for the requirements of advanced driver 

assistance systems (ADAS) and of advanced rider assistance systems (ARAS®). 

 

CONCLUSIONS 

The crash scenarios are consolidating for regions by combining them into a common form PCAS scenarios.  Since 

the GIDAS and FARS coding hierarchy differs, it requires an extra effort to map the existing data upon the 

proposed scenarios. The limitations found within the FARS data are as follows: 

 

i) Non-motorized participants (Pedestrian and Bicyclist) do not have a crash type in the ACC_TYPE 

variable. 

ii) Crash type for non-motorized participants needs to be obtained through PEDCTYPE and BIKECTYPE 

and adjust to each of the cases. 

iii) Changes in the data throughout the years (ACC_TYPE is introduced after 2010). 

Nevertheless, the methodology presented in this paper shows a systematic way to deal with these limitations. 

 

Since the FARS coding does not explicitly state if the pedestrian or cyclist was at fault (causer), we had to make 

the choice based on the parameter descriptions (See Table 3 and 4). Mapping results shown in Appendix 3 is 
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incomplete because we are unable to map directly a FARS value into a PCAS scenario since some values are coded 

unknown (i.e. specifics unknown, specifics other). However, the authors understand that improvement in the 

classification as well as the processing of the data still can be made. We may improve the method by using the 

pre-crash variables to get further details of the critical events which lead to the collision. 

 

Considering the challenge of properly mapping the N/A’s presented in Appendix 3, more research is needed to 

analyze and understand these parameters. We found that our algorithm works for the years 2015 to present; 

however, the database has significant changes for 2010 and prior which would need further analysis. 

 

The crash scenario catalogue presented in this paper is the result of an analytical approach of available in-depth 

crash data worldwide. Existing crash classifiers of different databases are used to create a harmonized dynamic 

scenario description. This enables a comparability of crash research results regardless of regional differences in 

data collection and coding formats. Therefore, harmonized safety system development and simulation methods 

and tools can be utilized. 

 

The scenario generation has been demonstrated on four different crash databases. The focus of this paper lays on 

the US fatality database FARS. The detailed mapping of the German GIDAS crash data is explained in [8], which 

can also be applied to the Chinese CIDAS data. Due to its simplicity, the Japanese ITARDA SIP crash codes can 

directly be mapped to the proposed crash scenarios. SIP codes are defined by 255 typical accident types with more 

than three fatalities; these cover around 80% of fatal accidents in Japan, however, accident types with less than 3 

fatalities are not considered. 

 

OUTLOOK 

This paper describes a method to cluster crash types to a harmonized set of scenarios, by looking at each crash 

from the perspectives of the causer and of the non-causer and by considering additional pre-crash information. 

This inductive approach will naturally leave a quantity of crashes that cannot automatedly be mapped to crash 

scenarios, since the available classification is not sufficient, see Table 6. To further increase the respective 

percentages, additional research should be performed to add further available crash parameters. Ultimately, manual 

re-coding might be needed to reach 100% coverage, which however will be difficult to justify for existing data. It 

is therefore suggested that the proposed scenario catalogue is introduced as a standard crash parameter to all 

relevant worldwide databases and is consequently populated for all new cases. 

 

Table 6. 

Percentage of crash participants classified by automatic mapping method 

 

Database Region Percentage covered 

GIDAS Germany 75% 

FARS US 70% 

ITARDA Japan 82% 

CIDAS China 75% 

 

The crash scenarios allow for a dynamic crash description from the perspective of the ego vehicle. They include 

ego movement and object direction, however do not differentiate between possible object intentions. In V2V 

communication systems, the object intention is communicated over the air, therefore the crash dynamic scenarios 

should be extended to reflect this extra information. An extension to the scenario definition with additional object 

intentions is proposed. Table 7 gives an example for scenario C1 “Crossing from right” with added object 

intentions. 
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Table 7. 

Scenario C1 “Crossing from right” with different object intentions 

 

No object intention Object going straight Object turning right Object turning left 

    
 

The proposed scenario catalogue has been developed by aggregating crash types from different crash databases. 

The catalogue does not cover normal driving scenarios that are not crash relevant. To allow the classification of 

all real-world driving data, such as normal driving, near miss incidents and crashes, the scenarios catalogue is 

further extended. Therefore, non-crash relevant scenarios are added. Table 8 shows following-scenarios with 

traffic objects in same or adjacent lanes. 

 

Table 8. 

Scenarios L1, L11, L12 “Run-up in same lane”, “Following in adjacent lane” 

 

Run-up in same lane Following in adjacent lane 

   
 

The proposed scenario catalogue should be applied to a maximum number of worldwide crash and naturalistic 

driving databases (NDD). Table 9 lists several databases that are suggested for further research. 

 

Table 9. 

Possible variables for scenario generation in other databases 

 

Database Region Variables Reference 

RASSI India PRECREV, PRECRA, PRECRB [9] 

iGLAD Worldwide ACCTYPE, ACCTYPEA, ACCTYPEB [10] 

SHRP2 NDS USA Crash Type [11] 

TUAT NDS Japan Incident / Collision Type [12] 
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APPENDICES 

Appendix 1: Scenario mapping Japan for crashes with at least 3 fatalities (SIP code) 

Code Causer 
Non-

causer 
Code Causer 

Non-

causer 
Code Causer 

Non-

causer 

CTC-01 C2 C1 CTC-11 On2 N/A CTC-20 On1 On1 

CTC-02 C1 C2 CTC-12 On2 On1 CTC-21 On2 On1 

CTC-03 On1 T3 CTC-13 L1 L4 CTC-22 On2 On1 

CTC-04 T3 On1 CTC-14 L1 L4 CTC-23 On2 On1 

CTC-05 On2 On1 CTC-15 On2 On1 CTC-24 On2 On1 

CTC-06 C2 C1 CTC-16 L1 L4 CTC-25 L1 L4 

CTC-07 C1 C2 CTC-17 On2 On1 CTC-26 L1 L4 

CTC-08 T4 C1 CTC-18 On2 On1 CTC-27 On1 On1 

CTC-09 T9 C2 CTC-19 On2 On1 CTC-28 On1 On1 

CTC-10 T3 On       

 

Code Causer 
Non-

causer 
Code Causer 

Non-

causer 
Code Causer 

Non-

causer 

CTM-01 C2 C1 CTM-09 T4 C1 CTM-16 On2 On1 

CTM-02 C1 C2 CTM-10 T3 On1 CTM-17 L1 N/A 

CTM-03 On1 On2 CTM-11 On2 On1 CTM-18 L1 L4 

CTM-04 T5 L2 CTM-12 L5 L3 CTM-19 T4 N/A 

CTM-05 T3 On1 CTM-13 T3 On1 CTM-20 L5 L3 

CTM-06 C2 C1 CTM-14 On2 On1 CTM-21 T3 On1 

CTM-07 C1 C2 CTM-15 L5 L3 CTM-22 L5 L3 

CTM-08 T10 C2       

 

Code Causer 
Non-

causer 
Code Causer 

Non-

causer 
Code Causer 

Non-

causer 

CTB-01 C2 C1 CTB-11 T1 L2 CTB-20 On1 On1 

CTB-02 C1 C2 CTB-12 T3 On1 CTB-21 L1 L4 

CTB-03 T1 L3 CTB-13 On1 On1 CTB-22 C2 C1 

CTB-04 T2 On1 CTB-14 L1 L4 CTB-23 C1 C2 

CTB-05 T5 L2 CTB-15 C2 C1 CTB-24 L5 L3 

CTB-06 T3 On1 CTB-16 C1 C2 CTB-25 L5 L3 

CTB-07 L1 L4 CTB-17 C2 C1 CTB-26 On1 On1 

CTB-08 C2 C1 CTB-18 L1 L4 CTB-27 C2 C1 

CTB-09 C1 C2 CTB-19 L1 L4 CTB-28 C1 C2 

CTB-10 T14 C2       
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Code Causer 
Non-

causer 
Code Causer 

Non-

causer 
Code Causer 

Non-

causer 

CTP-01 C2 C1 CTP-18 C1 C2 CTP-35 C1 C2 

CTP-02 C1 C2 CTP-19 T1 C2 CTP-36 L1 N/A 

CTP-03 T2 C1 CTP-20 T5 C1 CTP-37 L5 L3 

CTP-04 T1 C2 CTP-21 T3 C2 CTP-38 L6 L2 

CTP-05 T5 C1 CTP-22 L1 N/A CTP-39 C2 C1 

CTP-06 T3 C2 CTP-23 T3 N/A CTP-40 C1 C2 

CTP-07 T3 C2 CTP-24 L5 L3 CTP-41 C2 C1 

CTP-08 C2 C1 CTP-25 C1 C2 CTP-42 C1 C2 

CTP-09 C1 C2 CTP-26 C2 C1 CTP-43 C1 C2 

CTP-10 T3 C2 CTP-27 C1 C2 CTP-44 L1 N/A 

CTP-11 L1 N/1 CTP-28 T3 C2 CTP-45 L5 L3 

CTP-12 L5 L3 CTP-29 C1 C2 CTP-46 C1 C2 

CTP-13 C2 C1 CTP-30 L1 N/A CTP-47 L1 N/A 

CTP-14 C1 C2 CTP-31 T3 N/A CTP-48 B1 N/A 

CTP-15 T5 C1 CTP-32 L1 N/A CTP-49 B1 N/A 

CTP-16 T3 C2 CTP-33 L5 L3 CTP-50 B3 C2 

CTP-17 C2 C1 CTP-34 C2 C1    

 

Code Causer 
Non-

causer 
Code Causer 

Non-

causer 
Code Causer 

Non-

causer 

MTC-01 C2 C1 MTC-06 C1 C2 MTC-10 On2 On1 

MTC-02 C1 C2 MTC-07 T4 C1 MTC-11 On2 On1 

MTC-03 On1 T3 MTC-08 T3 On1 MTC-12 L1 L4 

MTC-04 T3 On1 MTC-09 On2 On1 MTC-13 L5 L3 

MTC-05 C2 C1       

 

Code Causer 
Non-

causer 
Code Causer 

Non-

causer 
Code Causer 

Non-

causer 

BTC-01 C2 C1 BTC-04 C1 C2 BTC-06 L6 L3 

BTC-02 C1 C2 BTC-05 C1 C2 BTC-07 L6 L3 

BTC-03 C2 C1       

 

Code Causer 
Non-

causer 
Code Causer 

Non-

causer 
Code Causer 

Non-

causer 

PTC-01 C1 C2 PTC-05 C1 C2 PTC-08 C1 C2 

PTC-02 C2 C1 PTC-06 C2 C1 PTC-09 C2 C1 

PTC-03 C1 C2 PTC-07 L4 L5 PTC-10 N/A L1 

PTC-04 C2 C1       

 

Code Causer 
Non-

causer 
Code Causer 

Non-

causer 
Code Causer 

Non-

causer 

HCTC-01 L1 L4 HCTC-04 L1 L4 HCTC-07 L1 L4 

HCTC-02 L1 L4 HCTC-05 On2 On1 HCTC-08 On2 On1 

HCTC-03 L1 L4 HCTC-06 L1 L4    
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Code Causer 
Non-

causer 
Code Causer 

Non-

causer 
Code Causer 

Non-

causer 

HCTM-01 L1 L4       

 

Code Causer 
Non-

causer 
Code Causer 

Non-

causer 
Code Causer 

Non-

causer 

HCTP-01 C1 C2       
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Appendix 2: FARS Terminology 

For this paper the following data files and variables are used from FARS, year 2015 (FARS Analytical User’s 

Manual 1975 – 2016).  

 

Accident: This data contains information about crash characteristics and environmental conditions at the time of 

the crash. There is one record per crash. 

 

ST_CASE: This data element is the unique case number assigned to each crash. It appears on each data 

file and is used to merge information from the data files together. 

 

Vehicle: This data file contains information describing the in-transport motor vehicles and the drivers of in-

transport motor vehicle who are involved in the crash. There is one record per in-transport motor vehicle. 

 

VEH_NO: This data element is the consecutive number assigned to each vehicle in the case. It is used in 

conjunction with the ST_CASE data element to merge information from vehicle level data files. 

 

ACC_TYPE: Identifies the attribute that best describes the type of crash this vehicle was involved in 

based on the “First Harmful Event” and the pre-crash circumstances. 

 

Person: This data file contains information describing all persons involved in the crash including motorists (i.e., 

drivers and passengers of in-transport motor vehicles) and non-motorists (e.g., pedestrians and pedal cyclists). 

There is one record per person. 

 

PER_NO: This data element is the consecutive number assigned to each person in the case (i.e., each 

occupant, pedestrian, or non-motorists involved in the crash). It is used in conjunction with the ST_CASE 

data element (and sometimes the VEH_NO data element) to merge information from person level data 

files. 

 

Vevent: This data file contains the sequence of events for each in-transport motor vehicle involve in the crash. 

 

VNUMBER1 & 2: This data element identifies the “Vehicle Number” (VEH_NO) of this in-transport 

motor vehicle described in this event. This is the vehicle described in “Sequence of Events” for this 

event. If Vehicle #1 (V1) impacts Vehicle #2 (V2), then we have at least 2 Vevent records. 

 

VEH_NO EVENTNUM VNUMBER1 SOE VNUMBER2 

1 1 1 12 2 

2 1 1 12 2 

 

The explanation of these 2 records is as follows: 

V1 was involved in event 1 where V1 impacts V2 

V2 was involved in event 1 where V1 impacts V2 

 

EVENTNUM: This data element is the consecutive number assigned to each harmful and nonharmful 

event in a crash, in chronological order. 

 

PBType: This data file contains information about crashes between motor vehicles and pedestrians, people on 

personal conveyances and bicyclists. There is one record for each pedestrian, bicyclist or person on a personal 

conveyance. 

 

PEDCTYPE: This data element summarizes the circumstances of the crash for this pedestrian. 

 

BIKECTYPE: This data element summarizes the circumstances of the crash for this bicyclist. 

 

Using the above variables, the data sets, and the formula 1, we can infer the variable PART_NO (Participant 

number). Thus, a participant number is a number assigned to each of involved parties in a given crash (pedestrian, 

bicycle, car type). This shall not be mistaken by the PER_NO or the VEH_NO, however is obtained from these 

two. 

  



   
 

Lara 17 
 

Appendix 3: Scenario mapping proposal for USA (FARS) 

Crash 

Type 
Scenario 

 Crash 

Type 
Scenario 

 Crash 

Type 
Scenario 

1 D1  41 D3*  78 T10 

2 D1  42 N/A  79 C1 

3 D1  43 N/A  80 T14 

4 N/A  44 L2*  81 C2 

5 N/A  45 L3*  82 T4 

6 D2  46 L5  83 C1 

7 D2  47 L6  84 N/A 

8 D2  48 N/A  85 N/A 

9 N/A  49 N/A  86 C2 

10 N/A  50 On2  87 C1 

11 L1  51 On1  88 C1 

12 O2  52 N/A  89 C2 

13 L1  53 N/A  90 N/A 

14 O2*  54 D3*  91 N/A 

15 N/A  55 D3*  92 B 

16 N/A  56 D3*  93 L4* 

20 L1  57 D3*  98 N/A 

21 L4  58 D3*  99 N/A 

22 L4  59 D3*    

23 L4  60 D3*    

24 L1  61 D3*    

25 L4  62 N/A    

26 L4  63 N/A    

27 L4  64 On2    

28 L1  65 On1    

29 L4  66 N/A    

30 L4  67 N/A    

31 L4  68 T2/T3*    

32 N/A  69 On1    

33 N/A  70 T1    

34 D3*  71 L3    

35 D3*  72 T5    

36 D3*  73 L2    

37 D3*  74 N/A    

38 D3*  75 N/A    

39 D3*  76 T9    

40 D3*  77 C2    

 

Note: Scenarios with * indicate that the mapping needs to be optimized. 
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Appendix 4: Overview of all scenarios for crashes “Car vs. Motorcycle” in four major countries 

 

Car vs. motorcycle crashes from the perspective of the car 

 

Scenario 

Share in % 

Germany (KSI) USA (K) China (KSI) Japan (K) 

T1 0.1 0.5 6.0 0.0 

T2 0.0 0.0 0.7 0.0 

T3 18.1 29.5 9.0 22.8 

T4 14.6 9.7 9.0 2.0 

T5 9.7 1.8 3.0 0.0 

T9 2.2 0.9 0.0 0.0 

T10 2.2 0.9 0.7 0.5 

T14 0.2 0.2 0.0 0.0 

C1 6.4 4.0 13.4 10.8 

C2 6.8 9.5 18.7 12.2 

L1 3.4 5.8 6.7 2.7 

L2 1.5 0.8 9.7 0.0 

L3 1.0 1.8 1.5 0.0 

L4 12.6 9.6 0.0 1.1 

L5 2.6 0.6 2.2 1.6 

L6 5.6 0.4 0.7 0.5 

On1 5.9 7.2 11.2 9.3 

On2 3.4 4.9 3.7 2.5 

S1 0.0 0.0 0.0 0.0 

S2 0.0 0.0 0.0 0.0 

B 1.2 0.2 0.7 0.0 

N/A 2.3 11.9 3.0 34.1 

Total 100 100 100 100 

 

Germany: GIDAS 2005-2018, weighted to national crash statistics 

USA: FARS 2015, not weighted to national crash statistics 

China: CIDAS 2014 - 2018, not weighted to national crash statistics 

Japan: ITARDA 2013, not weighted to national crash statistics 
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Car vs. motorcycle crashes from the perspective of the motorcycle 

 

Scenario 

Share in % 

Germany (KSI) USA (K) China (KSI) Japan (K) 

T1 0.1 0.0 0.7 0.0 

T2 0.0 0.0 0.0 0.0 

T3 2.3 1.2 8.9 2.3 

T4 1.2 0.6 3.0 0.0 

T5 0.6 0.1 6.7 0.0 

T9 0.0 0.1 3.0 0.0 

T10 0.2 0.1 0.0 0.0 

T14 0.0 0.2 0.7 0.0 

C1 24.8 19.8 25.2 14.0 

C2 7.4 4.3 10.4 11.5 

L1 12.9 9.6 0.0 0.0 

L2 15.4 2.4 4.4 0.0 

L3 2.8 2.1 7.4 2.0 

L4 3.4 5.9 6.7 2.7 

L5 0.9 0.6 0.7 0.0 

L6 0.9 0.6 3.0 0.0 

On1 20.9 34.4 12.6 31.6 

On2 4.0 6.0 2.2 0.7 

S1 0.0 0.0 0.0 0.0 

S2 0.0 0.0 0.0 0.0 

B 0.0 0.0 0.0 0.0 

N/A 2.2 11.9 4.4 35.2 

Total 100 100 100 100 

 

Germany: GIDAS 2005-2018, weighted to national crash statistics 

USA: FARS 2015, not weighted to national crash statistics 

China: CIDAS 2014 - 2018, not weighted to national crash statistics 

Japan: ITARDA 2013, not weighted to national crash statistics 
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ABSTRACT 
 
In 1998, the National Highway Traffic Safety Administration (NHTSA) and the Governors Highway Safety 
Association (GHSA) developed the Model Minimum Uniform Crash Criteria (MMUCC), a voluntary guideline to 
encourage greater crash data uniformity by identifying a minimum set of motor vehicle crash data elements and 
attributes that States should collect and include in their State crash data system.  NHTSA relies on State crash data 
for the Fatality Analysis Reporting System (FARS). FARS is a nationwide census providing NHTSA, Congress, and 
the American public yearly data regarding fatal injuries suffered in motor vehicle traffic crashes. States have 
implemented MMUCC differently, often combining or deleting attributes, which causes problems with data 
uniformity when attempting to aggregate data across States.  The purpose of this paper is to describe methods used 
to measure States’ alignment to MMUCC 5th Edition, examine the variance of States’ crash data to MMUCC data 
elements, and describe how NHTSA will use the results of this analysis to inform future editions of MMUCC with 
the goal of improving the quality of FARS data. 
 
INTRODUCTION 
 
In 1998, NHTSA published the MMUCC, a voluntary guideline to collect data on motor vehicle crashes that can 
generate the information necessary to improve highway safety within each State and nationally. Early editions of 
MMUCC lacked guidance on implementation, which led to each of the 50 States, the District of Columbia (DC), and 
the U.S. Territories enacting MMUCC differently. Between the 4th and 5th Editions, NHTSA created a 
methodology to measure States’ alignment to MMUCC, which was later updated and incorporated into the MMUCC 
5th Edition. In 2018, NHTSA mapped the crash data elements and attributes from all States, DC, and Puerto Rico to 
the MMUCC 5th Edition and established the first baseline measurement of alignment to MMUCC.  The results of 
this mapping exercise provide NHTSA a framework for offering States and territories technical assistance and 
training to increase their alignment to MMUCC, and will inform future changes to NHTSA’s crash data 
publications, from MMUCC to the Fatality Analysis Reporting System (FARS) / Crash Report Sampling System 
(CRSS) Coding and Validation Manual. 
 
BACKGROUND 
 
NHTSA uses police-reported motor vehicle traffic crash data to conduct research, analyze traffic crash trends, 
support safety programs, and make data-driven decisions daily. Understanding States’ crash data capabilities are 
reporting is critical to ensuring accuracy for all data-driven programs.  Historically, each State developed their own 
methods for collecting, managing, and analyzing data on motor vehicle crashes. Consequently, crash data varied 
substantially between States. The lack of uniform data elements and attributes made it challenging to understand 
national crash trends.  In 1975, NHTSA began collecting a census of fatal crashes using the FARS to provide an 
overall measure of highway safety.  NHTSA trained analysts in each of the 50 States, DC, and Puerto Rico to 
convert the State data sources into FARS data codes. 
 
Similarly, in 1988, NHTSA began the National Automotive Sampling System General Estimates System (NASS 
GES), a program to collect a nationally representative sample of police-reported motor vehicle crashes of all 
severities (fatal, injury, property-damage-only) to identify traffic safety problem areas, provide a basis for regulatory 
and consumer initiatives, and form the basis for cost and benefit analyses of traffic safety initiatives. The NASS 
GES and its replacement the Crash Reporting Sampling System (CRSS), requires analysts to recode the crash data 
collected from different States into a standard format. Early on, it was apparent that the substantial variability in 
State crash data made it costly and challenging to produce national crash datasets. 
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In 1998, NHTSA and GHSA published the first MMUCC. This provided States voluntary guidance on the minimal 
set of standardized data elements and attributes necessary to describe the characteristics the vehicles, the persons, 
and the environment involved in motor vehicle crashes,. NHTSA and GHSA encouraged States to adopt MMUCC 
to increase crash data uniformity. Greater standardization of crash data enables State highway safety agencies to 
more efficiently and cost-effectively share data with other agencies in their State (such as public safety), compare 
their crash data with other States, and, exchange crash data with federal data systems. Since the initial release of the 
MMUCC Guideline in 1998, NHTSA and GHSA have revised MMUCC four times in response to technological 
changes and evolving traffic safety needs. Early editions of the MMUCC Guideline did not provide States with 
implementation guidance, resulting in each State adopting MMUCC differently. As States developed their own data 
collection guidelines regarding what crash data to collect, what is a reportable crash, and what data to maintain on 
their Crash Databases, the variance between States’ crash data increased. As a result, States often use different 
formats and names for data elements and attributes or they may combine (or split) elements and attributes. 
 
In 2014, NHTSA and GHSA recognized the need to develop a methodology for measuring the alignment of the 
crash data States collected on their Police accident reports (PAR) and the data entered and maintained on Crash 
Databases to the data elements and attributes in the MMUCC Guideline.  Through extensive consultation with the 
State stakeholders at the Association of Traffic Records Information Professionals (ATSIP) International Traffic 
Records Forum, NHTSA and GHSA developed a methodology to map the data elements and attributes from States 
PARs and their crash databases to MMUCC. This process recognized that while State data systems often use 
different terminology and formatting, different data sets can often be mapped to the MMUCC data elements and 
attributes. Thus, if an element or attribute on a State PAR or in its Crash Database did not match a MMUCC element 
or attribute verbatim, but is essentially the same, it is considered “mapped” to MMUCC.  In 2015, NHTSA 
published “Mapping to MMUCC: A Process for Comparing Police Crash Reports and State Crash Databases to the 
Model Minimum Uniform Crash Criteria,” [1] a set of rules to assist States in evaluating their alignment to 
MMUCC. 
 
In 2017, NHTSA and GHSA published the 5th Edition of MMUCC [2], which included updated mapping rules to 
address significant changes to the MMUCC content and format. In addition, the MMUCC 5th Edition no longer 
designated elements to be “collected at the scene,” “derived,” or “linked.” Instead, MMUCC encouraged States to 
collect data elements based on the States’ capabilities. States that have integrated traffic records datasets collect less 
data for their crash reports at the scene of a crash because they can instead link or derive data elements from other 
sources, such as the roadway, driver, and vehicle file. As a result, comparing a State’s crash database to MMUCC is 
more useful than comparing a State PAR to MMUCC. 
 
Following the publication of the 5th Edition of MMUCC, NHTSA collected crash data documentation (data 
dictionary, police instruction manual, database schema, and crash report forms) for all 50 States, DC, and Puerto 
Rico to measure how each States’ crash database structure aligns to MMUCC.  The objectives for this project 
included establishing a baseline for understanding the States’ crash data capabilities, identifying the data elements 
and attributes that are problematic for States, providing States a measure of how they align to MMUCC and detail 
opportunities for improvement, and to inform future editions of MMUCC by understanding potential impacts 
changes might have on the States. 
 
METHODS 
 
Measuring the alignment of a State’s crash data to MMUCC involves several steps to compare the data elements and 
attributes within the State crash database (the source) to the data elements and attributes in the target).  Figure 1 
provides a brief overview of this process. The first step involves gathering the relevant documentation, which 
includes the most recent version of MMUCC and documentation on the State’s crash data system.  Typically, a 
State’s crash database is comprised of the corresponding data collected on police crash reports, derived from data 
collected on crash reports, and obtained from other data sources (e.g., a roadway database). Ideally, the State’s crash 
data elements and attributes should contain all 115 MMUCC data elements and their attributes. If the data dictionary 
for the State Crash Database does not list all data elements and element attributes used in the crash database, then 
analysts examine the State’s PAR and police instruction manual for all relevant terms and definitions needed to map 
to the MMUCC.  
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Figure 1: The MMUCC Mapping Process 

The second step for measuring a State’s alignment to MMUCC involves building out the target MMUCC data 
structure and the source State data structure to compare and evaluate the similarity of the State’s data elements and 
attributes to those of the MMUCC. Table 1 is an example of the table used to map a State’s data element and 
attributes for “Weather” to the MMUCC date element and attributes for “C11. Weather conditions”.  Since the 
MMUCC Guideline allows two attribute selections for “C11. Weather Conditions” the table is set up to include both 
subfields. Initially, analysts used an Excel spreadsheet to facilitate side-by-side comparisons of the data elements 
and attributes, which was cumbersome.  NHTSA developed an IT application for analysts to build and update the 
source and target data structures, record the analyst’s comments and mapping decisions, and export a final report. 
The application can maintain the mappings when either the target MMUCC data structure or the source State data 
structure are updated, which will facilitate future efforts to re-map a State’s data to MMUCC when either change.  
This application also included many safeguards to ensure the integrity of the mapping results (i.e. color-coded 
mapping status notations and preventing attributes from being coded twice). 
 
The third step involves determining how consistent the States crash data structure is with MMUCC by identifying 
which of the State’s crash data elements and attributes can map to each MMUCC data element and attributes. 
Analysts apply mapping rules published in the MMUCC 5th Edition to determine if a State data attribute can be 
mapped, or matches MMUCC. All mapping decisions are binary at the attribute level where analysts decide whether 
the State’s data matches MMUCC or not. The mapping process is a “top-down mapping” approach that starts with 
the data elements and works down to attributes. Individual elements with zero attributes (i.e., VIN) either will map 
to a corresponding MMUCC element/attribute or will not. While there is no partial mapping for data elements with 
no attributes, data elements with multiple attributes can partially map, if at least one State attribute matches an 
attribute for that MMUCC element. Many States collect more data elements than what MMUCC prescribes. The 
MMUCC mapping process is only concerned with the 115 MMUCC data elements and their associated attributes. 
The mapping rules include two primary sets of rules:  The general rules, such as the many-to-one rule, where two 
State data attributes can match to one MMUCC data attribute, and the one to many rules that prohibits one State data 
attribute from mapping to two MMUCC data attributes. Another set of rules covers specific data elements that have 
unique characteristics requiring additional explanation and interpretation. 
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Table 1. 

Mapping State Data Element “Weather” to the MMUCC “C11. Weather Conditions” 
 

Target: MMUCC 
Data Element 

“C11. Weather 
Conditions” 
Selection 1 

Ability 
to Map? 
(1 = Yes, 
0 = No) 

Source: State  
Data Element 

“Weather” 

 Target: MMUCC 
Data Element 

“C11. Weather 
Conditions” 
Selection 2 

Ability 
to Map? 
(1 = Yes, 
0 = No) 

Source: State  
Data Element 

“Weather” 

Blowing Sand, Soil, 
Dirt 

0 (9) Blowing Sand, Soil, 
Dirt, or Snow cannot be 
split. 

 Blowing Sand, Soil, 
Dirt 

0 N/A 

Blowing Snow 0  Blowing Snow 0 N/A 
Clear 0 (1) No Adverse 

Conditions (Clear, 
Cloudy) cannot be split 

 Clear 0 N/A 
Cloudy 0  Cloudy 0 N/A 

Fog, Smog, Smoke 1 (2) Fog 
(7) Smoke/Dust 
includes Dust 

 Fog, Smog, Smoke 0 N/A 

Freezing Rain or 
Freezing Drizzle 

0 N/A  Freezing Rain or 
Freezing Drizzle 

0 N/A 

Rain 1 (4) Rain  Rain 0 N/A 
Severe Crosswinds 1 (10) Severe Crosswinds  Severe Crosswinds 0 N/A 
Sleet or Hail 1 (6) Sleet/Hail  Sleet or Hail 0 N/A 
Snow 1 (5) Snow  Snow 0 N/A 
Other 0 N/A  Other 0 N/A 
Unknown 0 N/A  Unknown 0 N/A 

 
Table 1 identifies the State’s data attributes that can map to the MMUCC attributes and the rules that apply. 
Specifically, the State’s attribute ‘(1) No Adverse Condition (Clear, Cloudy)’ cannot map to the MMUCC attributes 
‘Clear’ or ‘Cloudy’ because the State combines two MMUCC attributes ‘Clear’ and ‘Cloudy.’  Likewise, the State 
attribute ‘(9) Blowing Sand, Soil, Dirt, or Snow’ cannot map to the MMUCC attributes ‘Blowing Snow’ or ‘Blowing 
Sand, Soil, Dirt.’ However, the State attributes ‘(2) Fog’, and ‘(7) Smoke/Dust’ can map to the MMUCC attribute 
‘Fog, Smog, Smoke’ without a loss in data integrity. Four attributes from the State were mapped one-to-one to a 
MMUCC attribute (‘Rain,’ ‘Sleet or Hail,’ ‘Snow,’ and ‘Severe Crosswinds’). According to the general mapping 
rules, the State attribute ‘Other’ cannot map to the MMUCC ‘Other’ because the State did not possess all other C11 
attributes. The State did not have an attribute to map to the MMUCC attribute ‘Unknown.’ Finally, the State only 
allows for one attribute, while the MMUCC guideline suggests States should choose up to two attributes. However, 
C11 provides two attribute selections, which means that any State must provide 24 total attributes (12 C11 attributes, 
selected twice). Therefore, this State element has five attributes that map to the 24 possible attributes in MMUCC. 
 
After analysts completed the mappings for each State's crash data, NHTSA encouraged each State to participate in a 
debriefing to provide that State an opportunity to learn which of their crash data elements and attributes did not map 
to MMUCC. States could also use the debriefing to provide additional documentation about their crash data, which 
often led to revised results. NHTSA encourages States considering updating their PAR or crash database to review 
their MMUCC mapping report to identify opportunities to increase alignment with MMUCC.   
 
Finally, the MMUCC mapping method results in standardized scores that measure the percentage of alignment to 
MMUCC at the element level, system level, and overall total. Each MMUCC data element was scored by dividing 
the number of attributes that the State could map to MMUCC by the total number of MMUCC attributes for that 
element.  
 

MMUCC Element Mapping Score	 % 	= Number of State Attributes 
 that Map to the MMUCC Data Element 

Total Number of Attributes
 for the MMUCC Data Element

*  
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In Table1, there are 24 attributes for the for MMUCC element “C11 Weather Conditions” (12 attributes, selected 
twice). Of these 24 attributes, the State can map five attributes.  The score for this data element is calculated as 
follows:  

MMUCC Element Mapping Score	 % 	=	 5

24
=	20.8% 

 
The score for each of the eight data sections of MMUCC were calculated by summing the scores for all the data 
elements in each section and dividing by the number of data elements in each section. Table 2 shows the distribution 
of MMUCC data elements by section  
 

MMUCC Section Mapping Score	 % 	=	 ∑MMUCC Element Mapping Scores 
in the Section 

Number of MMUCC Elements 
in the Section 

 

 
 

Table 2. 
MMUCC Data Elements by Section 

  
Section  Data Elements 
Crash Section 27 
Vehicle Section 24 
Person Section 27 
Roadway Section 16 
Fatal Section 3 
Large Vehicle and  
Hazardous Materials Section 

11 

Non- Motorist Section 6 
Dynamic Data Element Section  1 
Total  115 

 
The score for each State’s alignment to MMUCC is the sum of each element mapping score divided by the total 
number of MMUCC data elements. The result is the overall State mapping percentage: 
 

Overall State to MMUCC Mapping Score	 % 	=	 ∑MMUCC Element Mapping Score

115
 

 
RESULTS 
 
Overall, States’ alignment to MMUCC is low and varies greatly. More than half the States aligned to less than 50% 
of the 115 MMUCC data elements. The mean percentage of States’ alignment to MMUCC is 45.9%, with alignment 
ranging from a low of 9.4% to a high of 84.8% and a standard deviation of 13.66.  As Figure 2 shows, a little less 
than half the States (46.2%) scored between 39.6% and 54.7%. 
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Figure 2. States’ Alignment to the MMUCC 5th Edition  
 
The MMUCC guideline includes eight sections that focus on a different type of data. As Error! Reference source 
not found.Table 3 shows, States alignment to MMUCC varies according to the different types States. States had the 
greatest alignment to MMUCC’s crash data elements with a mean score of 70.5% ranging from a low of 32.8% to a 
high of 96.4%. States had the lowest alignment to the dynamic data element, which is the most recent addition to 
MMUCC and measures Motor Vehicle Automated Driving System(s). Only one State’s data was aligned 100%, and 
46 States had zero alignment to this data element, resulting in a mean score of 3.4%.   
 

Table 3. 
States’ Alignment to 115 MMUCC Data Elements 

 
MMUCC Data Elements  Mean Score 

(%) 
Median 
Score 
(%)  

Lowest Score 
(%) 

Highest Score 
(%) 

Standard 
Deviation 

Crash (N=27) 70.5 72.1 32.8 96.4 13.88 
Vehicle (N=24) 56.7 58.3 6.7 95.4 17.61 
Person (N=27 46.5 44.2 1.5 91.7 17.21 
Roadway (N=16) 12.0 0.0 0.0 85.9 17.55 
Fatal (N=3) 20.3 16.3 0.0 100.0 22.40 
Large Vehicles and Hazardous 
Materials (N=11) 

30.4 24.9 0.0 87.9 25.87 

Non-Motorist (N=6) 28.0 26 0.0 96. 7 22.48 
Dynamic Data Element (N=1) 3.4 0.0 0.0 100.0 14.56 
       
Total (N=115) 45. 9 44.4 9.4 84.8 13.66 
 
Collecting national data on alcohol-related crashes is central to NHTSA’s work to understand risky driving 
behavior. Approximately one-third of all traffic crash fatalities in the United States involve drunk drivers (with 
blood alcohol content of .08 grams per deciliter (g/dL) or higher).  MMUCC includes several data elements to 
capture data on alcohol-related crashes. Table 4 summarizes States alignment to MMUCC alcohol-related data 
elements and attributes. MMUCC data element “C25. Alcohol Involvement” is the most uniformly adopted alcohol-
related element by States with a mean national alignment of 74.4% that includes 28 States that are in complete 
alignment with this data element, seven States with no alignment to this data element, and 17 States that can map to 
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some of this data element’s attributes. In contrast, the lowest level of alignment was for “F2. Alcohol Test Type and 
Results”, which had a mean national score of 27.9% that includes only one State in complete alignment and 11 
States with no alignment to this data element.  
 

Table 4. 
States Alignment to MMUCC Alcohol-Related Data Elements and Attributes 

 
MMUCC Alcohol-Related Data 
Elements and Attributes 

Mean 
Score 
(%) 

Median 
Score  
(%) 

N States 
with 0.0% 
Alignment 

N States 
with 

100.0% 
Alignment 

Standard 
Deviation 

“C25. Alcohol Involvement” 74. 4 100.0 7 28 34.35 

“P19. Condition at Time of the Crash” 
Attribute 5, ‘Under the Influence of 

Medications/Drugs/Alcohol’ 
34.0 34.4 16 2 30.21 

“P20. Law Enforcement Suspects Alcohol 
Use” 

66. 7 66.7 8 20 34.59 

“P21. Alcohol Test” 55.0 65.4 11 5 35.36 

“F2. Alcohol Test Type and Results” 27.9 22.2 11 1 25.94 

 
NHTSA collects data on other risky driving behaviors, including drowsy driving, drugged driving, speeding, and 
distracted driving. Table 5 identifies the MMUCC data elements and attributes that relate to each risky behavior.   
 

Table 5. 
Risky Driving Behavior captured in MMUCC 

 
Issues MMUCC Data Elements and Attributes  
Drowsy Driving “P19. Condition at Time of the Crash” 

1.1 and 1.2 Asleep or Fatigued 
Drugged Driving  “C26. Drug Involvement”,  

“P19. Condition at Time of the Crash  
Subfield 1.1 Under the Influence of Medications/ Drugs/ Alcohol  
Subfield 1.2 Under the Influence of Medications/ Drugs/ Alcohol,  

“P22. Law Enforcement Suspects Drug Use”, 
“P23. Drug Test”, 
“F3. Drug Test Type and Results”. 

Speeding “P13. Speeding Related” 
Distracted Driving “P18. Distracted By” 
 
As Table 6 show, States alignment to the MMUCC data elements related to risky driving behavior varies greatly 
with standard deviations ranging from 19.24 to 42.43.  States had the greatest alignment to the MMUCC data 
elements related to drowsy driving (41. 4%).  Data elements that States were in complete alignment to MMUCC was 
limited to 15 States collecting data on drowsy driving, nine States collecting data on speeding, and one State 
collecting data on distracted driving .  No States collected data on drugged driving that aligned completely to 
MMUCC.  
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Table 6. 

States Alignment to MMUCC Data Elements for Risky Driving Behavior 
 

MMUCC Data Elements 
for Risky Driving 
Behavior 

Mean 
Score 
(%) 

Median 
Score  
(%) 

N States with 
0.0% Alignment  

N States with 
100.0% Alignment 

Standard 
Deviation 

Drowsy Driving 41.4 50.0 24 15 42.43 
Drugged Driving 32.5 26.3 5 0 28.67 
Speeding 30.4 0 28 9 39.12 
Distracted Driving 6.3 0 42 1 19.24 
 
NHTSA promotes road safety through grants to States and countermeasures programs, which focus on school bus 
safety, seat belts, teen driving, child passenger safety, non- motorist safety, and motorcycle safety. Table 7 identifies 
the MMUCC data elements and attributes that relate to each safety countermeasure program. Collecting this data 
helps States and NHTSA understand the effectiveness of safety countermeasure programs.  
 

Table 7. 
Critical Safety Issues Captured in MMUCC 

 
Issues MMUCC Data Elements and Attributes  
School Bus 
Safety 

“V10. Special Function of Motor Vehicle in Transport” 
Attribute 01 'Bus – School (Public or Private)'; 

“P12. Driver License Number, Class, CDL and Endorsements” 
Attribute 04 'School’. 

Seat Belt 
Safety 

“P8. Restraint Systems/Motorcycle Helmet Use” 
Attributes 05 'Lap Belt Only Used’, 06 'None Used – Motor Vehicle Occupant’, 
07 'Restraint Used – Type Unknown’, 08 'Shoulder and Lap Belt Used’,  
09 'Shoulder Belt Only Used’, and Subfield 2 'Any Indication of Improper Use?’ 

Teen Driving 
Safety 

“P16. Driver License Restrictions” 
Attributes 08 'Intermediate License Restrictions', 09 'Learner’s Permit Restrictions’;  

“P17. Driver License Status” 
Attribute 02 'Non-CDL Restricted Driver license (Learner’s permit, Temporary/ Limited, 
Graduated)’. 

Child 
Passenger 
Safety  

“P8. Restraint Systems/Motorcycle Helmet Use” 
Attributes 01 'Booster Seat’, 02. 'Child Restraint System – Forward Facing’, 03 'Child 
Restraint System – Rear Facing', 04 'Child Restraint – Type Unknown' ; and 
Subfield 2 'Any Indication of Improper Use?' 

Non Motorist 
Safety  

“C22. Number of Non-Motorists” 
“P4. Person Type” 

Attributes 04 'Bicyclist’, 05 'Other Cyclist', 06. 'Pedestrian', 07 'Other Pedestrian 
(wheelchair, person in a building, skater, personal convey.)’, 08 'Occupant of a Non-
Motor Vehicle Transportation Device', 09 'Unknown Type of Non-Motorist’, and 99 
'Unknown'. 

Motorcycle 
Safety 

“P8. Restraint Systems/Motorcycle Helmet Use” 
Attributes 12 'DOT-Compliant Motorcycle Helmet’, 13 'Not DOT-Compliant Motorcycle 
Helmet’, 14 'Unknown If DOT-Compliant Motorcycle Helmet’, 15 'No Helmet’, 97 'Not 
Applicable’, 98 'Other’, 99 'Unknown’; and Subfield 2 'Any Indication of Improper Use?' 

 
As Table 8 show, States’ crash data alignment to the MMUCC data elements related to critical traffic safety issues 
was low and varies greatly.  States had the greatest alignment to those MMUCC data elements related to school bus 
safety (56.4%) and seat belt safety (56.0%). In contrast, motorcycle safety (“P8. Restraint Systems/Motorcycle 
Helmet Use” per Error! Reference source not found.) has the least alignment by States with an average of 30. 6% 
alignment including nine States that cannot map anything to this data element. Of note also are the 16 States that do 
not map anything to the MMUCC child passesnger safety data elements.   
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Table 8. 
States Alignment to MMUCC data Elements for Critical Traffic Safety Issues 

 

 

Mean Score 
(%) 

Median 
Score  
(%) 

N States with 
0.0% Alignment 

N States with 
100.0% Alignment 

Standard 
Deviation 

School Bus Safety 56.4 58.3 4 12 34.15 

Seat-Belt Safety 56.0 57.1 5 4 24.72 

Teen Driving Safety 43.1 41.7 2 2 23.78 

Child Passenger Safety 43.0 50 16 3 32.25 

Non-Motorist Safety 37.9 31.4 2 0 24.66 

Motorcycle Safety 30. 6 22.2 9 1 24.35 
 

DISCUSSION 
 
The most common issue NHTSA encountered during this MMUCC mapping project was outdated, incomplete or 
missing documentation, especially related to States’ crash data dictionary.  However, as a result of this project, many 
States updated or created documentation because the initial measurement of their database alignment to MMUCC 
was not reflective of their crash data capabilities. After receiving the new documentation, analysts updated the 
mapping scores to accurately reflect the contents of the primary production database. While some States took steps 
to improve or create documentation, several States still lack documentation about the external data systems linked to 
their crash database, and specifically those States lack definitions for data elements with established time-lapsed 
linkages with other traffic records data system, such as roadway, driver, and vehicle data systems. Conversely, 
States that have robust interfaces (live linkages) all had documentation in some form, and most had documentation 
that was fully updated and reflective of their existing system 
 
Another common issue NHTSA encountered was discrepancies between the States’ crash report form (or forms) and 
their database. In one instance, the mapping uncovered that a State had updated their statewide crash report form, 
but had failed to plan for or update their State crash database. In this case, the database could not save the new crash 
data elements that law enforcement collected. As a result, NHTSA finds that States may benefit from conducting 
regular data mappings and other data quality assessments and adjustments to keep their crash data system accurate 
and operational.  
 
Lastly, some jurisdictions collected elements at different levels than suggested in MMUCC (e.g., States collected 
vehicle or person-level elements at the overall crash level instead). The primary problem with collecting elements at 
higher levels than suggested is the loss in specific data about the people, vehicles or roadways involved. For 
example, the State might collect “Sequence of Events” for the entire crash, which yields a single value as opposed to 
collecting this for each vehicle involved. Conversely, States that opt to collect elements at lower levels than 
suggested collect more granular data than MMUCC. This provides more detailed data for State analysts and can still 
be rolled up into a MMUCC aligned mapping.  
 
Each State can use their MMUCC alignment score to develop an action plan for updating their crash report (or 
reporting software) and crash database. Since it may not be possible or desirable to update everything all at once, 
States can prioritize the elements to revise. NHTSA encourages States to establish an action plan and include the 
priority for change, rationale, deadline, and the person or agency responsible for each element for which they are 
considering a change.  
 
CONCLUSION 
 
The results of this mapping exercise provide NHTSA with the first nationwide understanding of State crash data 
capabilities, from which several initiatives are planned. First, the results form a baseline of capabilities that NHTSA 
plans to use to design and implement appropriate technical assistance and training to increase State alignment with 
MMUCC and improve data quality. Second, NHTSA plans to use the results to inform future changes to both the 
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MMUCC Guidelines and FARS Coding and Validation Manual. By understanding where the States’ capabilities 
currently reside, NHTSA can make better-informed decisions regarding additions, deletions, and changes to the 
existing data publications that will serve to enhance alignment between the States’ crash data systems and NHTSA’s 
MMUCC Guidelines and FARS Manual simultaneously. Thirdly, NHTSA plans to repeat this exercise on a 
regularly recurring basis to provide consistent, relevant information to all crash data stakeholders. This will result in 
NHTSA having the means and opportunity to conduct research and analysis on State crash data capability changes 
and trends over time, leading to further enhancements of all the programs listed herein.  
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ABSTRACT 

Currently, there are commercially available vehicles that include features capable of providing Level 2, Partial 
Driving Automation as defined by SAE International. Research on the use and performance of the systems that 
these vehicles employ in natural settings is needed to help clarify the systems’ potential benefits. The Naturalistic 
Study of Level 2 Driving Automation Functions (L2 NDS) project described herein has generated practical data to 
support the understanding of the use of automated lateral and longitudinal control functionality by evaluating a 
subset of currently available advanced technologies as drivers experience them during daily use.  

The objective of the L2 NDS project was to investigate, through a naturalistic driving study, real-world driver 
interaction with commercially available driving automation systems. Ten vehicles equipped with both lateral and 
longitudinal automated features were instrumented and loaned to participants for a 4-week period. A total of 120 
drivers were recruited over a 14-month data collection period. Each study vehicle was equipped with Virginia Tech 
Transportation Institute’s NextGen Data Acquisition System, which continuously records video of the both the 
driver and the roadway, as well as vehicle data and automated lateral and longitudinal control activations. These 
data were used to analyze driving automation system use and driver performance during the study. 

Focus area 1 investigated System Performance, including overall use of the features. Participants drove 216,585 
miles, with 70,384 miles driven with both lateral and longitudinal control features active. Focus area 2 investigated 
Driver-System Interaction and involved a review of driver behaviors during driving automation system use, 
specifically the prevalence of non-driving tasks. Drivers were observed engaging in non-driving tasks, but these 
were not related to feature use. Focus area 3 investigated Driver Performance, which was measured by drivers’ 
responses to Request to Intervene (RTI) alerts generated by the driving automation systems. Driver behavior was 
consistent with active driving/supervision of the automated features; drivers were receptive to RTI alerts. No RTIs 
were associated with any safety-critical events (i.e., crashes and near-crashes). In total, 5 minor crashes (no injury or 
visible damage) and 66 near-crashes were observed across the entire data set. No statistical relationship was 
observed between safety-critical event rates and feature activation level. Focus area 4 investigated Driver 
Engagement, which includes subjective feedback obtained from participants. Participants reported that they were 
generally comfortable and felt safe using the features, with self-reported trust increasing over the course of the 
study. 
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INTRODUCTION 

The objective of the Naturalistic Study of Level 2 Driving Automation Functions (L2 NDS) project was to 
investigate, through a naturalistic driving study (NDS), real-world driver interaction with commercially available 
vehicles that could sustain lateral and longitudinal motion control. The study objectives were to observe and 
evaluate how drivers operated vehicles equipped with lateral and longitudinal driving automation features intended 
for operation in mixed traffic under a variety of roadway types, driving conditions, and speeds. This study was also 
intended to support the identification and/or refinement of human factors-related needs to help encourage the safe 
operation of vehicles with driving automation features. 

Currently, there are several commercially available vehicle models offering optional features that automate at least 
some portion of lateral and longitudinal vehicle control. Depending on the make of the vehicle, different terms are 
used to name and describe these automated lateral and longitudinal control features. For example, the lateral control 
feature may be referred to as steering assist, lane keep assist, or lane centering, while the longitudinal control feature 
is often termed adaptive cruise control, intelligent cruise control, or advanced cruise control. In some cases, these 
systems activate together, while other implementations require two separate feature activations. When automated 
lateral and longitudinal control features are combined, the overall driving automation systems can be considered 
Level 2 (L2), Partial Driving Automation [1]. SAE describes the roles of the driving automation system and the 
driver during L2 driving automation in standard J3016, originally published in 2016:  

The Driving Automation System (while engaged): 1) Performs part of the dynamic driving task (DDT) by 
executing both the lateral and longitudinal vehicle motion control subtasks, and 2) Disengages immediately 
upon driver request. 

The Driver (at all times): 1) Performs the remainder of the DDT not performed by the driving automation 
system, 2) Supervises the driving automation system and intervenes as necessary to maintain safe operation 
of the vehicle, and 3) Determines whether/when engagement and disengagement of the driving automation 
system is appropriate, and immediately performs the entire DDT whenever required or desired. (p. 19) 

The research team notes that there is ongoing discussion regarding classification and definitions of driving 
automation systems and features. Although the report title includes the term “Level 2,” the goal of this research 
project was not to classify features as Level 2, but rather to determine how drivers interact with a range of driving 
automation features. Given the myriad of terms used to name or brand these types of automation, the general terms 
“automated lateral control features” and “automated longitudinal control features” are used in this paper.  

The project was designed to address four main focus areas, with specific research questions assigned to each. Focus 
area 1 investigated System Performance. Sampled and reduced data were used to provide insight into the systems’ 
performance. Focus area 2 investigated Driver-System Interaction and involved a review of driver behaviors during 
driving automation system use, specifically the prevalence of non-driving tasks. Focus area 3 investigated Driver 
Performance. Driver performance was measured by drivers’ responses to Request to Intervene (RTI) alerts 
generated by the driving automation systems. Focus area 4 investigated Driver Engagement, which includes 
subjective feedback obtained from participants. The project also included a Longer Drive Sub-Study focused 
specifically on drives longer than 2 hours. 

METHODS 

Two each of the following vehicles were leased for the duration of the study. Each of the selected models allowed 
drivers to simultaneously activate longitudinal and lateral automation features (relevant packages required are 
listed). As part of the lateral automation feature, all vehicles generated RTIs informing the driver to return hands to 
the steering wheel or otherwise administer lateral control input. 

• 2017 Audi Q7 Premium Plus 3.0 TFSI Quattro with Driver Assistance Package  

• 2015 Infiniti Q50 3.7 AWD Premium with Technology, Navigation, and Deluxe Touring Package 

• 2016 Mercedes-Benz E350 Sedan with Premium Package, Driver Assistance Package  
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• 2015 Tesla Model S P90D AWD with Autopilot Convenience (software version 8.0) 

• 2016 Volvo XC90 T6 AWD R with Design and Convenience Packages  

Each vehicle was equipped with Virginia Tech Transportation Institute’s (VTTI’s) NextGen Data Acquisition 
System (DAS). As shown in Figure 1, the DAS continuously recorded video of the forward roadway, the driver’s 
face, an over-the-shoulder view of the driver’s hands and lap area, a view of the footwell, and a rear view. The DAS 
also recorded vehicle data, including speed, accelerator pedal position, brake application, acceleration, lane position, 
turn signal activation, and GPS coordinates. 

 

Figure 1. Example of video views collected by the DAS 

For each driving automation system, the general operational envelope was ascertained in various driving 
environments. The longitudinal control features utilized a forward-looking set of sensors (typically radar-based; for 
some vehicles, forward camera data was also included). None of the longitudinal control features directly responded 
to traffic ahead in adjacent lanes. Following distance could be adjusted by the driver, with following distance 
settings having an approximately 2–3-second headway.  

Lateral control features varied in their overall capability. In some cases, the lateral control feature would initiate 
steering as the study vehicle approached a lane marking, while in others the system operated more akin to a “lane 
centering” feature, with active steering from the feature. Lateral control features utilized a forward-looking camera 
with a vehicle-specific machine vision algorithm to track lane markings.   

Regardless of overall capability, all features required active monitoring from the driver and frequent intervention. 
For all vehicles, the intended use of the lateral control features required the driver’s hands on the wheel to engage it, 
and drivers were warned not to use the driving automation systems in poor visibility conditions, weather related or 
otherwise. As noted, the vehicles varied somewhat in feature availability and activation; in some cases, the lateral 
control feature was only available if the longitudinal control feature was already engaged, or the two features 
engaged simultaneously. For most of the vehicles, the following feature generalizations are most relevant for the 
current paper: 

• Driving automation systems were intended for use in highway driving environments with clear weather 
• Lateral control features were generally available at speeds above 40 mph with visible lane markings 
• Lateral control features were based on a vehicle-specific machine vision system to track lane markings 
• Additional sensors (e.g., ultrasonic) may have been used for lateral safety systems such as blind spot 

warning  
• Longitudinal control features were available above 20 mph 
• Longitudinal control features were forward-radar based 
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• No vehicles included corner or side-facing radar units 
• RTIs were all generated as part of the lateral driving automation feature 
• Timing was based on the lack of detected steering inputs from the driver and/or crossing a detected lane 

marking 
• RTIs were multi-modal, including both a visual and auditory component (no RTIs included a haptic 

component) 
 

Although some vehicles tested included a “low speed” version of driving automation (i.e., traffic jam assist, pilot 
assist, autopilot), baseline epochs for this effort were sampled from the speeds outlined above for lateral and 
longitudinal control features. However, RTIs and safety-critical events (SCEs; i.e., crashes and near-crashes) were 
included from all speeds. 

PARTICIPANTS 

A total of 120 participants were recruited—12 participants for each of the 10 selected study vehicles. All 
participants were recruited from the Washington, DC region, which included both northern Virginia and Maryland 
suburbs. Participants were balanced across age and gender and were recruited from two age groups: 25 to 39 years 
old, and 40 to 54 years old, which were the age groups used in previous test track research [2]. For each set of 12 
participants, six were from the younger age group (three male and three female) and six were from the older age 
group (three male and three female). 

Drivers were compensated up to $500 as follows: 1) up to $360 if their total mileage was under or equal to 1,200 
miles; or 2) $500 if they exceeded 1,200 miles. They were also lent a transponder that gave them free access to the 
high-occupancy toll lanes managed by Transurban.  

APPROACH 

Each driver was assigned to one vehicle for the duration of their 4-week participation time in the study. Drivers 
received training on the vehicles designed to mimic what they would receive at a dealership if purchasing a new car. 
Training consisted of a static orientation and a two-part test drive. The static orientation included instruction on all 
of the driving automation system features. During the first part of the test drive, the onsite researcher drove the study 
vehicle and demonstrated the driving automation features. Once the researcher completed the demonstration of the 
features, the participant took over driving the vehicle. The participant was then able to experience features and ask 
the researcher any remaining questions. After completing training, participants drove the study vehicle instead of 
their own vehicle during the 4-week participation period.  

Participant data was saved to a secure server and analyzed once driving periods were complete. Continuously 
recorded data were then sampled for further annotation and analysis. Trained data reductionists reviewed the 
sampled recorded video, audio, and parametric data to annotate the driver, vehicle, and environmental factors that 
were present during each of the sample types (driving automation system use, RTI alerts, and SCEs). 

DATA SAMPLING AND REDUCTION 

NDSs provide continuous data recording while participants are driving. The focus of this section is to describe the 
approach to sampling, reducing, and analyzing continuously recorded data. Established kinematic algorithms (e.g., 
hard decelerations, lane departures, high yaw rates) were used to identify potential SCEs. Trained data reductionists 
(see below) then inspected the videos associated with these events to verify the occurrence of an SCE. For baseline 
driving samples, 15-second epochs were sampled from the continuously recorded data. The 15 seconds were divided 
into 10 seconds prior to and 5 seconds after the time of interest. Samples were taken during instances in which both 
the lateral and longitudinal driving automation features were engaged, during instances in which the driving 
automation system was available but not engaged, and during instances in which both features of the driving 
automation system were available but only one was engaged. Instances in which an RTI was issued were also 
sampled. Driving automation was available when the vehicle was traveling above the speed required for activation 
on a road with visible lane markings. The sampling approach was as follows: 
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• All periods in which the driving automation system was available for use and also active were identified using a 
VTTI-developed machine-vision algorithm combined with available vehicle network information.  

• Up to twelve 15-second epochs per driver were randomly sampled from the periods in which the driving 
automation system was active (samples were stratified by each week of participation). It was determined that 12 
samples per driver were needed to provide a reliable statistical estimate of driver performance, and 15-second 
samples allowed for the assessment of drivers’ visual behavior and engagement in non-driving-related tasks; this 
sampling method was adapted from a previous NDS [3].  

• Up to 12 epochs per driver of instances in which the driving automation system was available, but only one 
feature (either lateral or longitudinal) was active, were sampled. These were instances where only lateral or only 
longitudinal control was automated, but vehicle speed was above 40 mph and data reductionist-verified lane 
markings were present. 

• Up to 12 epochs per driver of instances in which both functions of the driving automation system were available, 
but neither lateral nor longitudinal control automation was active, were sampled. These were instances where the 
vehicle speed was above 40 mph and data reductionist-verified lane markings were present. 

• Up to 12 RTI epochs per driver per week were sampled. These were instances where an RTI was issued by the 
vehicle’s human-machine interface. 

• All SCEs that were observed in the dataset were analyzed. See the Results section below for details regarding the 
total number and type of SCEs (crashes and near-crashes) observed during data collection.  

This sampling strategy was implemented to allow comparisons of driver behavior and roadway scenarios between 
levels of driving automation system engagement (when such activation was available). As noted, for each epoch 
type, 12 epochs per driver week were planned. In practice, 12 epochs were not observed in all cases for all vehicles; 
Table 2 shows the number of samples collected. In cases where there were fewer than 12 samples for a week, all 
instances of that activation were reduced. 

Table 1.  
Total epochs samples and average samples per driver 

Epoch Total 
Average 
Samples 
per Driver 

Average 
Samples 
per Week  

Both Features Engaged 1,295 11 3 

No Features Engaged, Both 
Features Available 

1,052 9 2 

One Feature Engaged, 
Both Features Available 

1,083 9 2 

RTIs 449 4 1 

SCEs 71     
 
RESULTS AND KEY FINDINGS 

The L2 NDS was intended to produce an initial understanding of commercially available driving automation 
systems. This project is the first study sponsored by the National Highway Traffic Safety Administration to review 
driver interaction with vehicles that include lateral and longitudinal automated features in real world settings. This 
research effort was intended to provide insight into four focus areas: System Performance (during unscripted, on-



 
 
 

Sheldon 6 
 

 

road driving), Driver System Interaction, Driver Performance, and Driver Engagement. Key findings for each focus 
area are summarized below. 

System Performance 
Across all 120 participants, a total of 216,585 miles were driven (1,805 average per participant), with 53,360 miles 
driven below 40 mph. The remaining 163,225 miles were driven at speeds at or above 40 mph—of these, 70,384 
miles were driven with both lateral and longitudinal driving automation active, 50,454 with one feature active, and 
42,431 with no features active.  

The analysis of environmental factors observed indicated that, in most cases, participants were operating the driving 
automation system-equipped vehicles in a manner consistent with manufacturers’ intended use. When operating the 
vehicles at speeds above 40 mph, drivers typically drove with both features active. Drivers were less likely to 
activate the systems in heavy traffic, on non-interstate roads, and in rainy weather conditions.  

Driver System Interaction 
Non-driving task prevalence was observed to be similar across all activation levels; there was no increase in non-
driving tasks when both lateral and longitudinal control features were active. The most common non-driving tasks 
observed were interacting with a passenger and monitoring the instrument panel. Furthermore, the types of tasks 
performed and eyes-off-road time were also similar across activation levels. The observed prevalence of non-driving 
tasks was high, but it should be noted that the current study used a 15-second reduction window to assess non-
driving tasks. Previous estimates of secondary tasks performed as part of the Second Strategic Highway Research 
Project (SHRP 2) were based on a 6-second reduction window [3]. Additionally, drivers were observed to be 
monitoring and/or interacting with the instrument panel (center dashboard console and instrument cluster) in about 
10% of sampled cases; this is consistent with supervisory behaviors as feature activation level (e.g., on or off), 
settings (e.g., following distance setting), or other system status (e.g., lane marking tracking) were presented in the 
instrument panel. 

Driver Performance 
In total, there were 71 SCEs observed in the data set. Five SCEs were crashes, and 66 were near-crashes. All crashes 
were low severity, rated as Level 3 or Level 4 based on previously adapted SHRP 2 definitions [4] (Virginia Tech 
Transportation Institute, 2015). No statistical relationships were observed between SCE rates and feature activation 
level. No RTIs were observed in the context of any SCE. The one observed crash with both features active was a 
single vehicle crash in which the driver struck a toll lane access gate at low speed (the driver attempted to enter a 
buses-only entrance). Although both features were active at some point during the reduction window, the driver 
pressed the brake prior to impact, overriding the driving automation features. The driver was not distracted and had 
at least one hand on the wheel throughout the event. No damage to the gate or vehicle was observed in this instance.  

A total of 449 RTIs were sampled; in 118 of these, drivers were observed to have hands off the wheel. Analysis of 
reaction times for the RTIs in which drivers had hands off the wheel showed that the average reaction time of 0.94 
seconds was within an expected range based on the results of previous research (e.g., [2]). However, there were 
some cases that showed longer response times or no intervention from the driver. Examination of these cases 
revealed that drivers were exploring the boundary conditions associated with the driving automation systems (e.g., 
intentionally keeping hands off wheel to test RTI duration and lateral control feature capabilities). Drivers were 
often observed explaining system functionality to passengers in these events, which all occurred when traffic was 
generally free flowing, weather was clear, and drivers were looking forward and attentive.  

Driver Engagement 
Overall, drivers appeared to trust the driving automation systems, and were comfortable using them. Driver 
interviews and trust ratings gathered at specific intervals during the 4-week participation period suggested that there 
was little change in trust in the lateral systems, although summarized comments also indicated that there were 
situations reported where the lateral systems did not function as expected. Again, these limitations are consistent 
with how the vehicles were characterized, and it is likely that even after the features were demonstrated, participants 
still had a higher than realistic expectation of function. Trust in the longitudinal system did increase over time; 
subjective feedback suggested that drivers learned the limitations of the longitudinal system and were able to use it 
more effectively after understanding its limitations. 
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ABSTRACT 

Research Question / Objective:  Advanced Driver Assistance Systems (ADASs) such as Forward Collision 
Warning have been developed for light passenger vehicles (LPVs) to avoid and mitigate collisions with other road 
users and objects. These technologies may have contributed to a reduction in LPV traffic fatalities in the EU and US. 
However the number of powered two wheeler (PTW) fatalities has remained relatively constant in the US. To fully 
realize the potential safety benefits across all vehicle categories, LPV crash avoidance technologies also need to be 
effective in avoiding collisions with PTWs. To accomplish this, knowledge of the pre-crash LPV-PTW vehicle 
trajectories and conflicts is needed to guide the development and testing of effective crash countermeasures for both 
LPVs and PTWs. 

Methods and Data Sources:  Crash scenario database development tools previously developed to evaluate LPV-
LPV crash countermeasure effectiveness have been extended to LPV-PTW crash scenarios. This involved using 
information for a large sample of LPV-PTW crashes from the EU Motorcycle Accidents In-Depth Study (MAIDS) 
and US Motorcycle Crash Causation Study (MCCS) databases, which are based on in-depth crash investigations and 
the Organisation for Economic Co-operation and Development (OECD) Common Methodology. The vehicle pre-
crash trajectories were estimated based on the coded data and digitized information from the scaled pre-crash scene 
diagrams. The pre-crash conflict state was then analyzed based on these trajectories. 

Results:  The estimated pre-crash trajectories using this method indicate that LPV-PTW pre-crash trajectories and 
conflicts in France, Germany, Italy, and the US have many similarities, but there are some differences as well. These 
results indicate that conflicts in several types of pre-crash scenarios, such as the LPV turning across the PTW path in 
the same direction or opposite direction, begin less than 1.5 sec before impact, which may not be sufficient time for 
some crash countermeasures based on conflict detection and driver warnings to be effective. 

Discussions and Limitations: The accuracy of the results is based on a number of assumptions, approximations, 
and limitations in the data and methods used. These include the accuracy and representativeness of the data based on 
in-depth crash investigations, as well as the domain-of-validity and accuracy of the vehicle directional control 
models used. 

Conclusion and relevance to session submitted:  Analysis of real world accident data is critical to the 
development and evaluation of ADAS and automated driving systems. This analysis has shown that LPV-PTW 
crash countermeasures need to function with shorter pre-crash conflict epochs, or in the pre-conflict phase, in order 
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to be effective in preventing collisions. This information may help to define requirements for LPV-PTW crash 
countermeasures (e.g., C-ITS V2V and Blind Spot Detection), evaluate their effectiveness, and inform the 
development of performance confirmation tests (e.g., New Car Assessment Programs).

INTRODUCTION 

Advanced Driver Assistance Systems (ADASs) such as Forward Collision Warning (FCW), Automatic Emergency 
Braking (AEB), and Blind Spot Warning (BSW) have been developed for Light Passenger Vehicles (LPVs) to avoid 
and mitigate collisions with other road users and objects. These crash avoidance and mitigation countermeasures 
may have contributed to the 41% reduction in the overall number fatalities in the EU from 43,151 in 2007 to 25,651 
in 2016 [1], and a 9% reduction in the overall number of traffic fatalities in the US from 41,259 to 37,461 in the 
same time period [2]. A main component of these overall reductions were a 42% reduction in LPV occupant 
fatalities in the EU from 20,744 to 11,990, and an 18% reduction in the US from 29,072 to 23,714. Powered two 
wheeler (PTW) fatalities, comprising mopeds and motorcycles,1 also decreased by 42% from 7,522 in 2007 to 4,334 
in 2016 in the EU, but increased by 2% in the US over the same period. In an effort to explain the differences in the 
PTW versus LPV fatality trends in the US, one question is whether or not LPV ADASs are as effective in avoiding 
collisions with PTWs compared to other road users. 

Lenkeit and Smith [4] evaluated the ability of eight 2016 model year LPVs equipped with FCW to detect an 
exemplar motorcycle and passenger car using two tests in the US National Highway Traffic Safety Administration 
(NHTSA) FCW confirmation test procedures. The results of this preliminary evaluation indicated that only two of 
the eight LPVs tested were able to pass the NHTSA test procedure scenario with a stationary motorcycle as the 
principal other vehicle (POV), compared to all LPVs passing the test with a stationary passenger car as the POV. 
Therefore these preliminary results tend to indicate that FCW systems may not be as effective in avoiding or 
mitigating collisions with a motorcycle as they are with a passenger car. 

Van Auken et al. ([5],[6],[7]) then estimated the pre-crash trajectories and conflicts for 101 crashes in the US and 
266 crashes in the EU involving one LPV and one PTW. This analysis was based on the European Motorcycle 
Accidents In-Depth Study (MAIDS) database [8] and the US Federal Highway Administration’s (FHWAs) 
Motorcycle Crash Causation Study (MCCS) database [9]. Both of these databases were developed based on in-depth 
accident investigations using methodology based on the Organisation for Economic Co-operation and Development 
(OECD) Common Methodology [10]. 

Analysis of these estimated pre-crash trajectories indicated that the conflicts begin later, and therefore with smaller 
Time to Collision (TTC) values, compared to results for some LPV-LPV crashes. Therefore there may be less time 
for a driver or crash avoidance technology to avoid or mitigate a LPV-PTW crash after a conflict has been detected, 
compared to a LPV-LPV crash. As a result such systems may be less effective in avoiding LPV-PTW crashes. 

Background 
Dynamic Research, Inc. (DRI) has been developing and applying safety impact analysis methods for many years 
(e.g., [11]). This included the development of a comprehensive Safety Impact Methodology (SIM) in two Honda-
DRI Advanced Crash Avoidance Technology (ACAT) programs for the US NHTSA. The comprehensive and 
general structure of this methodology and accompanying tools are well suited for the potential evaluation of LPV 
ADAS (e.g., FCW, AEB, and BSW) effectiveness in avoiding and/or mitigating collisions with PTWs with the 
extensions originally outlined in [12], as well as other applications such as pre-crash conflict analysis, the 
development of system requirements, and testing. 

In-Depth LPV-PTW Crash Databases 
Two databases that have sufficient suitable information to be integrated into this SIM methodology are from the 
European MAIDS study and the US MCCS study. Both of these studies had coded accident data and crash scene 
diagrams based on in-depth investigations. 

                                                            
1 Powered Two Wheelers comprise L1 and L3 vehicles as defined in [3]. L1 vehicles are commonly known as 
mopeds. L3 vehicles are commonly known as motorcycles. See the Definitions/Abbreviations Section. 
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The MAIDS study was conducted from 1998 through 2002 by the European Association of Motorcycle 
Manufacturers (ACEM) with co-funding by the European Commission. It was developed using the OECD Common 
Methodology [10]. All of the cases are from France, Germany, Italy, Netherlands, and Spain. Most of the MAIDS 
cases are from the 1999 to 2001 calendar year time period. 

The MCCS study was conducted by a team from Oklahoma State University, Westat, and Dynamic Sciences, Inc. 
and sponsored by the Federal Highway Administration (FHWA). It was also developed based the OECD Common 
Methodology with adaptions to the US motorcycling conditions. All of the cases are from Orange County, 
California. All of the MCCS cases are from the 2011 to 2015 calendar year time period. 

Project Aims 
The objective of this project was to extend the SIM tools and data to include the MAIDS and MCCS data in order to 
better understand the pre-crash conflicts of LPV-PTW crashes, to guide the development of LPV ADASs in 
avoiding and mitigating collisions with a PTW, and to evaluate their effectiveness and benefits. 

SAFETY AREA TO BE ADDRESSED BY THE ADVANCED TECHNOLOGIES 

The objective of the ACAT SIM with the PTW extensions is to evaluate the effectiveness and benefits of LPV 
ADASs (e.g., FCW, AEB and BSW) in avoiding or mitigating LPV-PTW crashes. It is assumed that these 
technologies could address crashes where the LPV driver inattention is a contributing factor, but may also be 
applicable to safety-relevant cooperative ITS (C-ITS) and other technologies as well. 

The size of the problem to be addressed 
One of the first steps in the development and evaluation a crash avoidance technology is to determine the size of the 
traffic safety problem in terms of broadly defined non-technology specific crash types. The estimated numbers of 
fatalities that represent the size of the problem for the entire EU and US motor vehicle fleets in the 2016 calendar 
year by the crash category and type of vehicle involved are listed in Table 1. Some of these crashes are not expected 
to be addressable by specific LPV technologies such as AEB due to either the vehicle application (e.g., not an LPV), 
the vehicle role (e.g., struck vehicle), or other technology relevant factors. For example, the results in Table 1 
indicate there were 997 PTW fatalities in the EU involving only one vehicle (i.e., did not involve an LPV). These 
results also indicate that there were 3,337 PTW fatalities in the EU involving one or more other vehicles, which 
account for 13% of all traffic fatalities in the EU. There were also 3,273 PTW fatalities in the US involving one or 
more other vehicles, which account for 9% of all US traffic fatalities in the US. A large portion of these cases 
involve an LPV, which could be potentially addressed by an LPV ADAS. 

Table 1. Estimated crash problem size for the entire EU and US motor vehicle fleets in the 2016 calendar year 
(A) (B) (C) (D) (E) (F) (G) 

Crash Number of EU Fatalitiesa Number of US Traffic Fatalitiesb 
Category PTW Other Total PTW Other Total 
  =(D)-(B)   =(G)-(E)  
1 Vehicle   997c 6,658  7,655d 2,065 18,415 20,480 
2+ Vehicle 3,337e 14,659 17,996e 3,273 14,053 17,326 
Total 4,334f 21,317 25,651g 5,338 32,468 37,806 

Sources: 
a Based on EU Community database on road accidents (CARE) data. 
b Based on US Fatality Analysis Reporting System (FARS, [13]) data (2018-05-18) query. 
c Assumed equal to 23% of all PTW fatalities based on [14], p 10, Table 5. It is assumed that none of the 

single vehicle crashes are pedal cycles. 
d [14], p 10, Table 5. 
e =Total- Single Vehicle 
f [1], p 19, Table 6 (677 moped fatalities) and p 20, Table 7 (3,657 motorcycle fatalities). 
g [1], p 10, Table 2. 
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METHODS 

The analytical approach involved refining and applying the methods developed in [5],[6],[7] for the EU MAIDS and 
US MCCS databases. The MAIDS and MCCS databases were developed using similar, but not identical, in-depth 
crash investigation methods. The MAIDS database was developed according the OECD common methodology. The 
MCCS database was developed using a methodology incorporating both the OECD and NHTSA methods. 

Overview of the Crash Scenario Database Development Tools 
A conceptual block diagram of the crash scenario database tools is given in Figure 1. These tools are collectedly 
referred to as “Module 1” in the Honda/DRI ACAT SIM. These Module 1 tools construct a harmonized crash 
scenario database for use in the development and evaluation of ADASs (e.g., requirements, simulation, and testing). 
The inputs are archival accident data such as the MAIDS and MCCS data as indicated at the top of the figure. The 
resulting crash scenario database comprises text summaries (to the extent available), harmonized coded data, scene 
diagrams, crash geometry and pre-crash time histories as depicted by the shaded database in Figure 1. These tools 
are organized into three sub-modules as follows: 

• Submodule 1.1 assembles a crash scenario database with a representative sample of LPVs involved in real-
world crashes. Ideally the crash scenario database would include all types of crashes and severities, which could 
be weighted to represent all crashes involving a LPV. This sub-module extracts cases from various coded 
accident databases such the MAIDS and MCCS data [8],[9]. 

• Submodule 1.2 is a tool to download or extract crash scene diagrams for each case in the crash scenario 
database if available. 

• Submodule 1.3 is an Automated Accident Reconstruction Tool (AART) to reconstruct the pre-crash and crash 
position versus time trajectories of the LPVs for each case in the crash scenario file, provided there is sufficient 
information available and the case is within the domain-of-validity of the AART (e.g., there is a crash scene 
diagram, vehicle velocity, and contact information). The resulting reconstructions can be used for simulation 
and testing. These results can also be used for other analyzes, such as the identification of pre-crash conflicts 
described in [6]. 

The extensions of these tools for the US MCCS and EU MAIDS data were described in [5],[6],[7].  

The results described herein are based on 367 cases from the US, France, Germany, and Italy that were 
reconstructed using this tool. The distribution of these cases is depicted in Figure 2. Each of these cases had 
sufficient information in the coded data, crash scene diagram, and supporting documentation to reconstruct the case. 
This excluded cases where a suitable scene diagram not available or did not have sufficient information about the 
locations of the vehicles prior to the impact and at the point of impact. 
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Figure 1. Crash Scenario Database Development Tools (e.g., [11]). 

 

Figure 2. Number of reconstructed Cases by rider injury severity and country. 
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Extensions for the Current Results 
The results presented herein are based on the following further refinements of the data and methods: 

- Module 1.1 
o The NASS Accident Type described in Appendix A was coded for both vehicles in each of the 

reconstructed cases. The coded variables are VATYPE for the LPV and PATYPE for the PTW 
according to the conventions used in Appendix F of [11]. Reconstructed cases with similar crash 
types were then classified into the 24 different crash configuration groups listed in Table 2. 

o Data indicating if “view obstructions [were] present and contributed to accident causation,” were 
extracted from the MAIDS and MCCS databases for both the LPV driver and PTW rider in order 
to further classify the reconstructed cases. 

- Module 1.3 (Motorcycle Automated Accident Reconstruction Tool – M-AART) 
o The assumed pre-crash vehicle speeds in cases where the coded travel speed was missing or 

unknown to take into account coded data indicating the vehicle was traveling at a constant speed 
or accelerating. 

o Numerous refinements to the trajectory estimation algorithms to improve the accuracy of the 
estimated trajectories based on the available data. This includes new “reference trajectory” types 
with constant steer input rates or rider lean angle rates, which are consistent with the white process 
noise inputs assumed by the Kalman Filter-Smoother, provided there a are sufficient number of 
digitized pre-crash vehicle positions. The reference trajectories are initial solutions to the vehicle 
equations of motion that are used to determine locally linearized equations for the Kalman Filter-
Smoother (e.g., [5]). It was also required that the PTW speed was either always less than or always 
greater than the critical speed of the Weir-Zellner model [16].2 This avoids a singularity in the 
quasi-steady reference trajectory solution at the critical speed. 
 

Table 2. Crash Configuration Groups based on NASS Accident Types 
Crash Configuration Group based on NASS Accident Types NASS Accident Types  

Mnemonic Description VATYPE/PATYPE 
HO/ODSS Head-on or opposite direction side swipe 50/51, 51/50, 65/64 
LPV LTAP/LD LPV left turn across PTW path/lateral direction 82/83 
LPV LTAP/OD LPV left turn across PTW path/opposite direction 68/69 
LPV LTAP/SD LPV left turn across PTW path/same direction 72/73 
LPV LTIP LPV left turn into PTW path/same direction 76/77 
LPV RE LPV rear-end PTW 20/21, 24/25, 24/26, 28/29 
LPV RTAP/SD LPV right turn across PTW path/same direction 70/71 
LPV RTIP/SD LPV right turn into PTW path/same direction 78/79 
LPV UT LPV U-turn across PTW path 940/941…944 
PTW LTAP/LD PTW left turn across LPV path/lateral direction 83/82 
PTW LTAP/OD PTW left turn across LPV path/opposite direction 69/68 
PTW LTAP/SD PTW left turn across LPV path/same direction 73/72 
PTW LTIP PTW left turn into LPV path 77/76 
PTW RE PTW rear-end LPV 21/20, 25/24, 26/24, 29/28, 30/28 
PTW RTAP/SD PTW right turn across LPV path/same direction 71/70 
PTW RTIP/OD PTW right turn into LPV path/opposite direction 81/80 
PTW RTIP/SD PTW right turn into LPV path/same direction 79/78 
SCP/L Straight crossing path, PTW on left side of LPV 86/87, 89/88 
SCP/R Straight crossing path, PTW on right side of LPV  87/86, 88/89 
SDSS/L Same direction side swipe, PTW on the left of LPV 47/45 
SDSS/R Same direction side swipe, PTW on the right of LPV 46/45 
T2/OD Both vehicles turning/opposite direction 68/82 
T2/SD Both vehicles turning/same direction 76/78, 78/76 
Other Other 74/74, 98/98 

                                                            
2 The “Norton 850” parameter values in [16] were assumed for motorcycles and the “Moped B” parameter values in 
[17] were assumed for mopeds. 
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Pre-Crash Conflict State Estimation 
As previously described in [6], the state of conflict between the LPV and PTW can be estimated as a function of 
time before the impact based on the estimated vehicle trajectories. For the purpose of this analysis the conflict state 

C  at time t  was defined for impacttt   as follows:   truêtC  if the vehicles will contact each other at time 

contactt  if their linear and angular velocities remain constant between time t  and contactt ; otherwise   falsêtC if 

the vehicles will never contact.3 For practical considerations the contact evaluation time interval was limited to up to 

1 sec after the reconstructed impact time (i.e., sec1 impactcontact ttt ). This definition can include momentary 

benign conflicts that may occur several sec before impact in addition to the final conflict, as illustrated by the 
example in Figure 4 and Figure 5. Of interest is the when the final conflict begins.4 

RESULTS 

The results in this section describe the estimated trajectories and conflicts for two example cases, followed by a 
summary for all of the cases. 

Example pre-crash trajectories and state of conflict 

Example Head-On Case 
An example pre-crash trajectory reconstruction of a Head-On case is illustrated in Figure 3, Figure 4, and Figure 5. 
This case involves a moped overtaking two other PTWs and then impacting a LPV that was exiting a parking area 
and turning to the right onto the roadway. The coded data indicates that there were rider “view obstructions present 
that contributed to accident causation.” Presumably these view obstructions were the other motorcycles. Figure 3 
shows the pre-crash vehicle speeds that were assumed based on coded data. Figure 5 shows the estimated vehicle 
directional control inputs versus time. Figure 4 shows the resulting vehicle trajectories overlaid on the crash scene 
diagram. The vehicle trajectories were fit to the locations of the LPV and moped shown on the scene diagram. The 
estimated vehicle positions and orientations are depicted at 1 sec intervals and the movement of the cg positions are 

depicted by continuous curves. The control inputs and vehicle positions when   truetC  are shown highlighted 

in yellow. The LPV and PTW vehicle level NASS accident types illustrated in Appendix A that best describe this 
case were VATYPE=51 and PATYPE=50 respectively, and therefore the HO/ODSS crash configuration group 
according to Table 2. 

 

Figure 3. Assumed pre-crash speeds versus time for the exemplar head-on case based on coded data. 

                                                            
3 The PTW handlebars were included in the potential contact with the LPV. It was assumed that the handlebars were 
0.89 m wide for the purpose of this conflict analysis. 
4 See footnote 9 in [6] for addition background and rationale for this conflict definition. 
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Figure 4. Estimated pre-crash trajectories for the examplar head-on case. 
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Figure 5. Directional control inputs versus time for the exemplar head-on case. 

This example case illustrates the directional responses of the LPV and PTW to the vehicle control inputs. It was 
assumed for this case that the moped was traveling at approximately 7 km/h above the posted speed limit of 50 km/h 
10 sec prior to impact.5 At the same time a LPV was leaving a parked position. The M-AART estimated that the 
driver turned to the left (negative steer angle) to approach the roadway, then turned to the right (positive steer angle) 
to merge onto the roadway going in the opposite direction to the PTW. At the time of the coded precipitating event, 
2.1 sec before impact, the coded data indicates the PTW was traveling at a constant speed of 58 km/h, and the LPV 
had accelerated to 29 km/h, as indicated in Figure 3. The rider then passed to the left of two other PTWs traveling in 
the same direction. The estimated rider passing maneuver involved first applying positive steer torque to turn to the 
left, then negative steer torque to turn to the right, then positive torque to recover as depicted in Figure 5. The coded 
data indicates both vehicles braked and the coded impact speeds were 21 km/h and 54 km/h respectively. Figure 4 
shows the close agreement between the estimated vehicle trajectories and the available information. The maximum 
differences between the digitized LPV and PTW positions and the corresponding estimated trajectories are 0.7 m 
and 0.5 m respectively. 

This example also illustrates both a momentary conflict which is benign and the final conflict which resulted in 
impact. The benign conflict occurs between t=-2.2 sec and t=-1.3 sec. This is when the LPV is headed towards the 
roadway and the vehicle velocity vectors intersect. The risk of collision will be small if the LPV turns to merge onto 
the roadway and the both vehicles stay within their respective lanes. This benign conflict ends as expected when the 
LPV turns to merge onto the roadway. The final conflict then begins 0.7 sec before impact. This is after the PTW 
crosses the lane boundary into the PTWs path. The coded data for this cases also indicates that the moped operator’s 
view of the LPV was obstructed. 

Example case with both vehicles turning 
Another example pre-crash trajectory reconstruction is illustrated in Figure 6. This case involves a motorcycle 
turning left across the LPV path while the LPV is also turning left to follow the main roadway. Therefore both 
vehicles are turning left. The maximum differences between the digitized LPV and PTW positions and the 
corresponding estimated trajectories are 0.6 m and 0.2 m respectively. The estimated trajectories are in a state of 
conflict beginning 1.6 sec prior to impact. The coded data indicates that that there were LPV driver and PTW rider 
“view obstructions present that contributed to accident causation.” Therefore the conflict may not have been 
detected because of visual obstructions. The LPV and PTW vehicle level NASS accident types illustrated in 
Appendix A that best describe this case were VATYPE=68 and PATYPE=82 respectively, and therefore the 
“T2/OD” crash configuration group according to Table 2. 

                                                            
5 The coded data for this case indicate that the moped had enhanced motor power and a modified exhaust. 
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Figure 6. Estimated pre-crash trajectories and conflict for an exemplar case with both vehicles turning. 

Pre-crash LPV-PTW trajectories 
The estimated trajectories for the 367 reconstructed cases are summarized in Figure 7 through Figure 12. Figure 7 
and Figure 8 show the results for the 266 EU MAIDS cases and 101 US MCCS data side by side. Figure 9 and 
Figure 10 show the results for the 242 cases involving a motorcycle and 125 cases involving a moped side by side. 
Figure 11 and Figure 12 show the results without and with a coded visual obstruction that contributed to the accident 
causation. Figure 7, Figure 9, and Figure 11 show the estimated PTW trajectories relative to the LPV in the LPV 
reference frame. The dotted lines show the relative positions of the PTW cg at 0.1 sec time intervals for the 3 sec 
prior to impact. Therefore pre-crash trajectories with higher velocities have larger spacing between the dots 
compared to trajectories with lower velocities. Likewise Figure 8, Figure 10, and Figure 12 show the estimated LPV 
trajectories relative to the PTW in the PTW reference frame. The relative vehicle positions when the conflict state 

  truetC  are highlighted in yellow. 
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Figure 7. Estimated PTW trajectories and conflicts relative to the LPV for the 3 sec prior to impact by region 
(266 EU MAIDS cases on the left versus 101 US MCCS cases on the right). 

 

 

Figure 8. Estimated LPV trajectories and conflicts relative to the PTW for the 3 sec prior to impact by region 
(266 EU MAIDS cases on the left versus 101 US MCCS cases on the right). 
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Figure 9. Estimated PTW trajectories and conflicts relative to the LPV for the 3 sec prior to impact by PTW 
type (242 motorcycle cases on the left versus 125 moped cases on the right). 

 

 

Figure 10. Estimated LPV trajectories and conflicts relative to the PTW for the 3 sec prior to impact by PTW 
type (242 motorcycle cases on the left versus 125 moped cases on the right). 
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Figure 11. Estimated PTW trajectories and conflicts relative to the LPV for the 3 sec prior to impact by 
visual obstruction (256 cases without visual obstruction on the left versus 111 cases with visual obstruction on 
the right). 

 

 

Figure 12. Estimated LPV trajectories and conflicts relative to the PTW for the 3 sec prior to impact by 
visual obstruction (256 cases without visual obstruction on the left versus 111 cases with visual obstruction on 
the right). 

The results in Figure 7 and Figure 8 compare the 266 EU MAIDS cases and the 101 US MCCS cases. These results 
indicate that the some of the EU cases have higher relative pre-crash closing velocities than the US cases. These 
results also indicate that the EU cases are more broadly distributed in relative approach angle than the US cases. The 
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smaller distribution of US cases compared to the EU cases may be partially attributed to the smaller US sample size. 
The US cases are primarily from a suburban sampling region with very few cases on rural roads or limited access 
divided highways. The EU cases were also sampled ten years before the US cases. 

The results in Figure 9 and Figure 10 compare the 242 cases involving a MC to the 125 cases involving a moped. 
All but one of the moped cases are from the MAIDS database. These results indicate that the LPV-MC cases tend to 
have higher relative closing velocities than the LPV-moped cases, which is consistent with moped speed restrictions 
in the EU. The differences are most apparent in the longitudinal direction in the PTW reference frame. Both the MC 
and moped cases have a wide distribution of relative approach angles. 

The results in Figure 11 and Figure 12 compare the 111 cases that had a coded visual obstruction that contributed to 
the conflict to the 256 cases that did not. The most noticeable difference is that none of the PTW rear-end LPV cases 
had a visual obstruction. This suggests that these PTW rear-end LPV cases may involve rider distraction or other 
factors. 

Pre-crash LPV-PTW conflicts 
The highlighted conflict state results in Figure 9 to Figure 12 indicate that many of the conflicts begin less than 3 sec 
before impact. The median start time for the MAIDS and MCCS data are 1.4 sec and 1.6 sec before impact 
respectively, and approximately 1.4 sec before impact overall. 

The distributions of the conflict start times by crash configuration group and PTW type are illustrated in Figure 13. 
The crash configuration groups on the horizontal axis of this graph are defined in terms of the NASS accident type 
according to Table 2. The pre-crash trajectories and conflicts for each of these crash configuration groups are 
depicted in Appendix B. The vertical axis of this graph is the estimated conflict start time relative to the time of 
impact, which is a negative value. The vertical range of each box in this figure represents the 25th and 75th 
percentile values for the conflict start time, and the horizontal line in each box represents the median value. The 
number of cases for each crash configuration group are indicated by the numerical value shown above the median in 
each box. The graph is limited to the 5 sec epoch before impact because earlier conflict times are increasingly 
sensitive to the assumed vehicle speeds and estimated vehicle trajectories (many of which were extrapolated 
backwards in time before the digitized vehicle positions in the scene diagrams). The last 1.5 sec before impact are 
indicated by a light red shaded background. This shading represents the epoch where there may be insufficient time 
for the driver or rider to react to an ADAS warning in order to mitigate or avoid the crash, and therefore the 
countermeasures involving simple conflict detection and driver warning may not be effective.6 

The results in Figure 13 indicate 10 of 21 crash configuration groups with median conflict times that began less than 
1.5 sec before impact. The six largest of these groups are the LPV LTAP/OD (90 cases), LPV LTAP/SD (29), LPV 
UT (22), PTW RE (22), HO/ODSS (20), and LPV RTAP/SD (19), which combined represent 55% (202/367) of the 
reconstructed cases. The 15 cases in the other four crash configuration groups all involve the PTW turning. 

                                                            
6 According to Neale and Dingus, “[w]hen a driver is looking forward, driver reaction time averages about 1.5 
seconds and may be as high as 2.5 or 3.0 seconds in all but the most extreme cases” [15]. 
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Figure 13. Distributions of estimated LPV-PTW conflict start times by crash configuration group. 

Comparison of EU MAIDS and US MCCS cases 
The estimated conflict start times are compared in further detail by data source in Figure 14. The format of Figure 14 
is similar to Figure 13, but each crash configuration bar is split into pairs. The results for the EU MAIDS cases are 
depicted by the cyan colored boxes on the left, and the results for the US MCCS cases are depicted by the magenta 
colored boxes on the right. 

The relative frequency of the MAIDS and MCCS cases were compared using a Pearson chi-square test. The 
resulting p-value=0.06 suggests that the relative frequencies of the MAIDS and MCCS cases are different, but the 
difference is not statistically significant at the 0.05 level. 

The mean conflict start times for each pair were also compared using two-sample t-tests. The t-tests assumed that the 
start times in each sample are normally distributed with homogenous variance. Therefore only crash configuration 
groups with four or more cases were tested (i.e., two or more statistical degrees-of-freedom). The only crash 
configuration group with a statistically significant difference in the mean conflict start time is the LPV LTAP/OD 
group (p-value<0.01). This statistically significant difference is attributed to the large number of cases (90). 

These results indicate that there are some differences between the two data sets, but that these differences are 
primarily related to the differences in the numbers of cases in each crash type rather than differences within each 
group. In other words, the conflict times within each crash configuration group are similar because they relative 
trajectories within each group are similar, as depicted in Appendix B. For example, there are more than 10 MAIDS 
and 10 MCCS cases in each of the LPV LTAP/LD, LPV LTAP/OD, and SCP/L groups, and the MAIDS and MCCS 
results for these groups are similar. Therefore we assumed that the two datasets can be combined without 
substantially changing the conclusions regarding conflict start times by crash configuration group. 
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Figure 14. Estimated LPV-PTW conflict start times by crash configuration group and data source. 

Comparison by PTW Type 
Likewise the results in Figure 15 compare the estimated conflict start time results by PTW type. The format of 
Figure 15 is similar to Figure 14 but the paired bars are different. The results for motorcycles are depicted by cyan 
boxes on the left, and the results for mopeds are depicted by magenta boxes on the right. 

The relative frequency of the MC and moped cases were also compared using a Pearson chi-square test. The 
resulting p-value=0.03 indicates that the relative frequencies of the MC and moped cases are statistically 
significantly different at the 0.05 level. However if the US MCCS cases are excluded, the resulting p-value is 0.37, 
which is not statistically significant. 

The mean conflict start times for the MC and moped in each crash configuration group were also compared using t-
tests. None of the groups had a statistically significant differences between the mean MC and moped conflict start 
times. 

These results also indicate that the main differences between the MC and moped crash configurations are due to 
relative differences in sampling frequency, which may be attributed to difference in the US and EU, but the conflict 
start times are similar. There are more than 10 MC and 10 moped cases in each of the five LPV LTAP and SCP 
groups, and the MC and moped results in four of these groups are similar. Therefore we assumed that the two PTW 
types can be combined without substantially changing the conclusions about the conflict start time results for each 
crash configuration group. 
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Figure 15. Estimated LPV-PTW conflict start times by crash configuration group and PTW type. 

Comparison by Visual Obstruction 
The results in Figure 16 compare the estimated conflict start time results by whether or not the coded data indicated 
that “view obstructions were present and contributed to accident causation.” The results in the cyan boxes on the 
left are without any visual obstruction, and the results in the magenta boxes on the right are with a view obstruction 
for either the LPV driver, PTW rider, or both. None of the crash configuration groups had a statistically significant 
difference in the mean conflict start times by visual obstruction, but the differences in the relative number of cases 
were statistically significantly different (p-value<0.01). 

Most (86) of the 111 cases involving a visual obstruction were in the six HO/ODSS, LPV LTAP, and SCP crash 
configuration groups. There were 247 cases in these six groups combined, and 35% had a coded visual obstruction. 

Nearly all (74) of the 79 cases in the LPV LTIP (6), rear end (7+20), RTAP/SD (18+2), and U-turn (21) groups did 
not have a coded visual obstruction. Therefore other factors such as operator distraction or error may be contributing 
to these types of crashes. It is unknown how many of the 22 U-turns were legal or not. The HO/ODSS, LPV 
LTAP/OD and LPV LTAP/SD groups had short conflict epochs regardless of whether or not there was a visual 
obstruction. 
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Figure 16. Estimated LPV-PTW conflict start times by crash configuration group and visual obstruction. 

DISCUSSION 

The effectiveness of potential conflict and crash countermeasures may depend on how soon the conflict is detected 
before impact. For comparison, the results in Figure 17 illustrate the distribution of conflict start times and collision 
effectiveness (CE) results for different technology relevant crash types (TRCTs) from a previous ADAS evaluation 
reported in [18]. The results for the “Primary” TRCT for which the crash avoidance countermeasure was intended to 
address, and three “secondary” TRCTs in which the technology designer thought the system might also be effective. 
A CE value of 0 indicates the technology is not effective in avoiding any of the crashes, which is undesirable. A CS 
value of 1 indicates the technology completely eliminates all of the crashes with the crash type, which is desirable. 
These results indicate that the crash avoidance countermeasure tends to be more effective for TRCTs with earlier 
conflict start times. Similar effectiveness results were observed in [11],[19].7 

                                                            
7 The collision effectiveness results in Figure 17 are based on simulated cases that have been weighted to represent 
the US fleet in the 2009 calendar year. The conflict start times are based on the unweighted unique cases in the 
simulation sample. Results for the other secondary TRCTs are not shown due to insufficient numbers of 
reconstructable cases for the evaluation reported in [18].  
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Figure 17. Boxplot distributions of estimated LPV-LPV conflict start times for a pre-production crash 
avoidance technology. 

As previously described, the results in Figure 13 indicate several crash configuration groups with short pre-crash 
conflict times. The quartile and median times for the 90 LPV LTAP/OD cases were 0.9, 1.3, and 1.7 sec before 
impact respectively. The results in Figure B3 indicate that the cases from the front left tended to have short conflict 
times, and there would have been insufficient time to detect and warn the driver before a collision 

The quartile and median times for the 29 LPV LTAP/SD cases were 0.8, 1.0, and 1.4 sec before impact respectively. 
The results in Figure B4 indicate many cases where the PTW may have been in the LPV blind spot during the 
conflict. However a BSW system might not have been able to detect a conflict and warn the driver with sufficient 
time to avoid a collision. 

Other potential countermeasures could be ADASs such as AEB that are not affected by the driver response time, or 
by detecting and warning the driver about the impending conflict sooner. The conflict could be detected sooner by 
changing the vehicle “contact” criteria to include close encounters or use more advanced sensors and algorithms. 
However this could also result in false alarms, which is undesirable. 

Impending conflicts could also be detected sooner and avoided or mitigated if the vehicle operators can see each 
other and properly communicate their intended paths before the conflict starts. One way to achieve this is by 
maximizing visual scanning strategies and vehicle conspicuity, and proper use and detection of turn signals. This 
could also be enhanced by safety-relevant cooperative C-ITS V2V communications systems such as Motorcycle 
Approach Indication (MAI) and Motorcycle Approach Warning (MAW)[20]. 

C-ITS also has the potential to address conflicts that cannot be detected early due to visual obstructions (e.g., the 
exemplar cases). The results in Figure 16 indicate that many HO/ODSS, LPV LTAP, and SCP crashes involved a 
visual obstruction, but there were also other crash configuration groups that did not. 
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LIMITATIONS 

The accuracy of the results are based on a number of assumptions, approximations, and limitations in the data and 
methods used, many of which are described in [5], [6], [7], [11]. These include the accuracy and representativeness 
of the MAIDS and MCCS data, as well as the accuracy of the vehicle directional control models used. 

SUMMARY/CONCLUSIONS 

Pre-crash trajectories have been estimated for 367 crashes involving a light passenger vehicle (LPV) and a 
motorcycle or moped for the purposes of evaluating the effectiveness and benefits of crash avoidance technologies 
in avoiding or mitigating these types of crashes. This was accomplished by extending methods and tools to address 
LPV-PTW crashes. Pre-crash trajectories of 266 cases in the MAIDS database from France, Germany, and Italy and 
101 cases in the US MCCS database were reconstructed using a new Motorcycle Automated Accident 
Reconstruction Tool (M-AART). The resulting pre-crash trajectories of the PTW as viewed from the LPV were 
broadly distributed in approach angle, with a possible gap from the right rear quadrant (i.e., between the 3 and 6 
o’clock directions). The US MCCS data also exhibited a gap between the 10 and 11 o’clock directions. There were 
relatively few cases where the LPV approached the PTW from the rear (e.g., rear-end). 

Further analysis of these estimated pre-crash trajectories indicate that the conflicts begin later, and therefore with 
smaller TTC values, compared to LPV-LPV crashes that were reconstructed for previous ADAS evaluations. This 
may be partially due to the smaller length and width of PTWs compared to LPVs, in which LPV-PTW close 
encounters do not result in a collision, but the same LPV-LPV trajectory would. Therefore LPV-PTW 
countermeasures may need to address the pre-conflict phase in order to be effective. 

It was also observed that 30% of the cases involved a visual obstruction as reported in the crash databases. Many of 
the cases with a visual obstruction were in the HO/ODSS, LPV LTAP, or SCP crash configuration groups. These 
cases could potentially be addressed by C-ITS countermeasures such as MAI and MAW. 

Only five of the 79 cases in the LPV LTIP, rear end, RTAP/SD, and U-turn crash configuration groups had a coded 
visual obstruction that contributed to the crash causation. Therefore other factors such as operator distraction and 
error may be contributing to these types of crashes. 

This information can be used to guide further LPV-PTW crash avoidance research, including collecting and 
analyzing additional on-scene in-depth pre-crash and crash data, field operational experiments, driving simulator 
experiments, modeling and simulation. The results of this research can potentially help to define requirements for 
LPV-PTW conflict and crash countermeasures (e.g., BSW, C-ITS) and the development of performance 
confirmation tests (e.g., New Car Assessment Program (NCAP)). These pre-crash scenarios can also be integrated 
into the ACAT SIM Crash Sequence Simulation Module in order to estimate the safety benefits and effectiveness of 
potential countermeasures. 
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DEFINITIONS/ABBREVIATIONS 

AART Automated Accident Reconstruction Tool (Honda-DRI ACAT SIM Module 1.3). 
ACAT Advanced Crash Avoidance Technology. 
ACEM European Association of Motorcycle Manufacturers (https://www.acem.eu/). 
ADAS Advanced Driver Assistance Systems. 
AEB Automatic Emergency Braking. 
BSW Blind Spot Warning. 

 tC  The estimated state of conflict at time t  based on the vehicle positions and velocities at time t .  tC  is 

true if and only if the vehicles will eventually contact if their velocities remain constant. 
CE Collision Effectiveness – a measure of the ability to avoid a crash. 
cg Center of gravity 
C-ITS Cooperative Intelligent Transportation System. 
DRI Dynamic Research, Inc. (http://www.dynres.com/). 
FCW Forward Collision Warning. 
FHWA US Department of Transportation Federal Highway Administration (https://www.fhwa.dot.gov/). 
L1 “A two-wheeled vehicle with an engine cylinder capacity in the case of a thermic engine not exceeding 

50 cm3 and whatever the means of propulsion a maximum design speed not exceeding 50 km/h” as 
defined in UN/ECE/TRANS/WP.29/78 Rev 2. (i.e., a moped). 

L3 “A two-wheeled vehicle with an engine cylinder capacity in the case of a thermic engine exceeding 50 
cm3 or whatever the means of propulsion a maximum design speed exceeding 50 km/h” as defined in 
UN/ECE/TRANS/WP.29/78 Rev 2. (i.e., a motorcycle). 

LPV Light passenger vehicle, comprising passenger cars, light trucks and vans. 
M-AART A specialized version of the ACAT SIM AART for LPV-PTW crashes. 
MAI Motorcycle Approach Indication, a C-ITS V2V technology. 
MAIDS Motorcycle Accidents In-Depth Study [8] (http://www.maids-study.eu/). 
MAW Motorcycle Approach Warning, a C-ITS V2V technology 
MC Motorcycle (L3 vehicle). 
MCCS Motorcycle Crash Causation Study [9]. 
NASS National Automotive Sampling System (https://www.nhtsa.gov/research-data/national-automotive-

sampling-system-nass). 
NCAP New Car Assessment Program (e.g., EuroNCAP) 
NHTSA US Department of Transportation National Highway Traffic Safety Administration 

(https://www.nhtsa.gov/). 
OECD Organisation for Economic Co-operation and Development (https://www.oecd.org/). 
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POV Principal other vehicle. 
PTW Powered two wheeler, comprising L1 and L3 vehicles. 
SIM Safety Impact Methodology. 
TRCT Technology Relevant Crash Type. 
TTC Time-to-Collision. 
V2V Vehicle-to-Vehicle [Communications]. 
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APPENDIX A – NASS ACCIDENT TYPES FOR TWO-VEHICLE COLLISIONS 

VATYPE and PATYPE Accident Type Codes 

 

Source: NASS GES Analytical User’s Manual, 1998-2000. 
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APPENDIX B – PRECRASH TRAJECTORIES AND CONFLICTS BY CRASH 
CONFIGURATION GROUP 

The estimated pre-crash trajectories and conflicts for the 3 sec prior to impact are illustrated in Figures A1 through 
A24 for the 24 crash configuration groups defined in Table 2. The graph on the left side of each figure depicts the 
position of the PTW relative the LPV in the LPV frame, and is a subset of the cases depicted in Figure 7. The graph 
on the right side of each figure depicts the position of the LPV relative to the PTW in the PTW frame, and is a 
subset of the cases depicted in Figure 8. The yellow highlighting indicates the positions that are in a state of conflict 

defined herein as   truetC . 

 

Figure B1. Head-on or opposite direction side swipe 
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Figure B2. LPV left turn across PTW path/lateral direction 

 

 

Figure B3. LPV left turn across PTW path/opposite direction 
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Figure B4. LPV left turn across PTW path/same direction 

 

 

Figure B5. LPV left turn into PTW path 
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Figure B6. LPV rear-end PTW 

 

 

Figure B7. LPV right turn across path/same direction 
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Figure B8. LPV right turn into path/same direction 

 

 

Figure B9. LPV U-turn across PTW path 
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Figure B10. Other crash type 

 

 

Figure B11. PTW left turn across LPV path/lateral direction 
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Figure B12. PTW left turn across LPV path/opposite direction 

 

 

Figure B13. PTW left turn across LPV path/same direction 
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Figure B14. PTW left turn into LPV path 

 

 

Figure B15. PTW rear-end LPV 
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Figure B16. PTW right turn across LPV path/same direction 

 

 

Figure B17. PTW right turn into LPV path/opposite direction 
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Figure B18. PTW right turn into LPV path/same direction 

 

 

Figure B19. Straight crossing path/PTW on left side of LPV 
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Figure B20. Straight crossing path/PTW on right side of LPV 

 

 

Figure B21. Same direction side swipe/PTW on the left side of LPV 
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Figure B22. Same direction side swipe/PTW on the right side of LPV 

 

 

Figure B23. Both vehicles turning/opposite direction 
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Figure B24. Both vehicles turning/same direction 
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ABSTRACT 

With the development of autonomous driving functions, the evaluation of their functional safety is becoming 
increasingly important. Current vehicles are tested with separate simulations or test drives. In order to validate 
future autonomous vehicles by means of test drives, a substantial number of test kilometers are necessary. In 
addition, these test drives must be repeated for every new release of the system, which increases the expenses for 
validation. For this reason, programs that can simulate test drives have a high significance. Previous programs do 
not include the indispensable combination of routing simulation and accident simulation needed to represent a 
simulated test drive. Therefore, an approach to combining a macroscopic simulation (routing simulation) with a 
microscopic simulation (accident simulation) is used in this paper. 

When the start location and the destination are given, the macroscopic simulation can compute the test route by 
means of the OSRM (Open Source Routing Machine) routing application. While driving along the test route, the 
simulated vehicles pass various locations of real accidents. The relevant data is taken from the accident database 
compiled by the police of Saxony, Germany. 

A selection procedure ensures that only relevant accident situations along the test route are later simulated 
microscopically. Only if the accident situation is similar to the current situation of the simulated vehicle can the 
accident situation be simulated microscopically. Therefore, various boundary conditions are used to determine 
whether there are similarities regarding weather, traffic, light conditions and trajectories of the accident vehicles. 
To study different variations of the selection procedure, three different concepts are developed and evaluated. The 
first concept is based on a given test route between start location and destination and a realistic calculation of the 
travel time. The second concept is also based on a given test route but combines this with a time window for the 
entire route. The third concept combines an unknown test route, which is calculated between relevant accident 
locations during the simulation, with a realistic calculation of the travel time. After the evaluation of all three 
concepts, only the third concept is implemented in the simulation. 

Within the microscopic simulation by means of PC-Crash, a relevant accident situation is simulated twice, once 
without and once with the tested driver assistance system in action. With the help of a collision detection system, 
a conclusion about the efficiency of the driver assistance system is made. The result is a program that combines 
completed test kilometers with avoided accident situations to simulate a test drive. 

The current program can only be used in Saxony, Germany. For an expansion to all of Europe, comprehensive 
accident data is necessary. In addition, the selection procedure could be improved by means of georeferenced 
weather and traffic data. Because of the basic simulation tools, the actual simulation is not designed for quality 
but rather for quantity. However, high-quality simulation tools can be implemented with little effort. The 
simulation of test drives is an important challenge, and with the program developed here, an opportunity to solve 
it is introduced. 
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OBJECTIVE 

In the development process of automated driving functions, the evaluation of their efficiency is unavoidable. 
Currently, simulations as well as test drives are used for evaluation purposes. With the help of repeated simulations 
of real accidents, it is possible to estimate whether an accident could have been prevented if the vehicle had been 
equipped with an Advanced Driver Assistance System (ADAS). Test drives in road traffic or on test tracks, on 
the other hand, expose the ADAS in question with real or staged situations [1]. 

In the future, the homologation process for highly automated driving functions and autonomous vehicles will 
become increasingly important. Currently, the functionality of prototypes is established in long test drives. 
However, several million test kilometers must be driven in order to obtain proof of safety. This procedure must 
be repeated after each system modification. This means that the expenses for obtaining proof of safety will 
increase significantly in the years to come [2]. 

For this reason, the development of a way to simulate test drives is desirable. In order to state the number of test 
kilometers driven, it is necessary to specify the route of the simulated vehicle. A suitable simulation solution – 
from now on called macrosimulation – is used for this purpose. Furthermore, an appropriate selection process for 
specific accident scenarios is developed within the scope of the macrosimulation. These scenarios are then studied 
microscopically. This way, it is possible to make a claim about how many of the selected specific accident 
scenarios could have been prevented by the system under testing. This is achieved with the help of a simulation 
that maps the interaction of the party who caused the accident and other parties involved in the accident. This 
simulation will be called microsimulation from now on.  

 

METHODS AND DATA SOURCES 

The combination of macroscopic and microscopic simulation elements allows the simulation of a test drive. Using 
the OSRM navigation application as a macrosimulation tool, the test route can be calculated from given points of 
origin and destination, and the vehicle’s position can be simulated depending on the time. The following 
elaborations are visualized by the schematic 
depicted in Figure 1. 

During the test drive, the simulated vehicle 
will be faced with several accident 
scenarios. The database of police-recorded 
accident data in Saxony provides the basis 
for all possible specific scenarios. An 
integrated, three-level selection process 
ensures that not only accident scenarios 
relevant in terms of time and location are 
considered for microsimulation, but also 
those that show similarities to the simulated 
vehicle in terms of traffic situation, weather 
and lighting conditions, as well as 
trajectories of the involved parties. The 
similarities are determined and guaranteed 
by applying several framework conditions. 
One example of a framework condition is 
the limitation of the time of the specific 
accident scenario to the arrival of the 
simulated vehicle at the accident location. 
The smaller the time difference to the 
specific accident, the greater the similarity 
of the oscillating traffic volume and the 
lighting is believed to be. 

Three different concepts for the integration 
of the macrosimulation and the 
corresponding selection process will be 
developed and compared.   

database of 
police-recorded 

accident data

accident location 
near the route

similarities to the 
situation of the tested 

vehicle

trajectories of the 
involved parties

trajectory suits the 
route of the vehicle

macrosimulation

implement framework 
conditions

microsimulationassessment of 
ADAS

yes

route

time base

yes

yes

no

no

no

concept-based

framework 
conditions

input data
(start point, …)

route, time base

concept 1 concept 2 concept 3

Figure 1: schematic of the selection process 
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The third and last step of the selection process is based on the intended trajectories of the involved parties. These, 
as well as the real trajectories, are generated at the Fraunhofer IVI on the basis of the accident data. In order for a 
certain accident scenario to be selected, one of the intended trajectories needs to correspond with the simulated 
course of the test vehicle. It is only possible under these circumstances that a vehicle at the same precise location 
and under similar framework conditions will be involved in an accident similar to the existing concrete accident 
scenario. If, for example, the simulated vehicle makes a right turn at an intersection where a left-turn accident has 
occurred, this accident simulation cannot be submitted to the microsimulation.  

Within the microsimulation, a statement is made about whether there is a collision between the parties involved. 
By executing separate simulations with and without a system under testing, it is possible to assess whether the 
system is able to prevent an accident. In combination with the length of the test route, a claim can be made about 
test kilometers driven, simulated accidents as well as prevented accidents. 

Development of three concepts for the integration of the macrosimulation 
Each of the three concepts is based on the macroscopic calculation of a test route between points of origin and 
destination. The concepts differ in the integration of the macrosimulation and the establishment of framework 
conditions for the selection process.  

     Concept 1 adapts a real test drive. The route is known prior to the start of the simulation, meaning that the 
points of origin and destination are also known. A route is generated between these two points under consideration 
of any desired number of intermediate points.  

Figure 2 shows the schematic structure of the first concept. The blue line depicts the route from point of origin to 
point of destination. In concept 1, all accidents along this route with a maximum distance of 15 m to the middle 
of the road are extracted from the database. The red crosses depict these accident locations along the route. 
Concept 1 also requires a start date and time, henceforth called the start time stamp. With the help of the start time 
stamp, it is possible to calculate the position of the test vehicle along the route. The result of this calculation is 
one arrival time stamp for the point of destination and arrival time stamps for each of the accidents extracted. In 
addition, each accident also has an accident time stamp describing the date and time at which the accident 
occurred. The accident time stamp can be extracted from the database of police-recorded accident data. If a 
simulated vehicle reaches the accident location close to the accident time stamp, the vehicle’s situation is similar 
to the situation. If a simulated vehicle reaches the accident location close to the time of the accident time stamp, 
its situation is similar to the situation causing the accident. A higher proximity between arrival time stamp and 
accident time stamp means a higher similarity. 

     Concept 2 is based on concept 1. Just as in concept 1, a route is generated between the points of origin and 
destination. This route is shown as blue line in Figure 3.  

origin:
2:00 pm

01.08.2017

destination:
4:00 pm

01.08.2017
accident at

2:30 pm

accident at
3:00 pm

accident at
3:30 pm

Figure 2: schematic of the first concept 

origin

destination

01.08.2017
3:00 – 5:00 pm

Figure 3: schematic of the second concept 
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Then, all accidents along the route that are close to the road are looked up. Similar to concept 1, each accident  
has a time stamp. However, concept 2 does not calculate when a simulated vehicle reaches the accident location. 
Instead, accidents are selected on the basis of a freely configurable time window. For the example shown in Figure 
3, this means that every accident between 3:00 pm and 5:00 pm is selected (red crosses). It is irrelevant in this 
case whether the simulated vehicle would be able to reach the accident locations in the given time or whether the 
accidents are depicted in a chronological order. The result of this abstraction is the simulation’s loss of direct 
comparability with real test drives. 

     Concept 3 is comparable to a real test drive because the calculation of its duration is realistic. However, the 
drivers do not know their final destination at the start of the test drive. Instead, they receive a new destination after 
they have reached a given intermediate destination. At the start of the simulation, only the point of origin, the start 
time stamp and the minimum distance of the test route are known. 

Figure 4 shows the schematic structure of the third concept. The point of origin and the start time stamp are 
visualized by a black circle with a cross. A pre-defined route, however, needs a destination. To determine a 
destination, all relevant records are filtered out of the database of police-recorded accidents in Saxony. Then, the 
distances between the point of origin and all extracted accident location is calculated. The accident location closest 
to the point of origin becomes the destination of the first route segment (red cross in Figure 4). 

An arrival time stamp is calculated for the selected accident location. Based on the arrival time stamp there is an 
assessment of whether the lighting conditions at the time of arrival are similar and whether the difference between 
the time of arrival and the time of accident is tolerable. If, considering all framework conditions, the accident 
scenario is still valid at the simulated vehicle’s arrival at the accident location, the scenario can be submitted to 
the selection process and simulated microscopically. 

After this, a destination for the following route segment is determined. The new point of origin is the location of 
the current accident scenario and the arrival time at the accident location becomes the new start time. As described 
above, all relevant records are extracted from the database and the distances to potential points of destination is 
calculated. Again, the closest accident is defined as destination of the current route segment. This loop is continued 
until the test vehicle has exceeded a predefined number of test kilometers. At this point, the simulation according 
to the third concept is terminated. 

Evaluation of the three concepts 
Before the three concepts can be compared to each other, each concept needs to be defined rigidly. For this, each 
concept is assessed in terms of its possible framework conditions for the selection process so that in the end, each 
concept is defined by a special combination of rigidly implemented framework conditions. The following three 
criteria are considered in the specification of the framework conditions. 

The first criterion is the number of selected accidents per 1,000 km distance. To determine this figure, the absolute 
number of selected accidents is divided by the test kilometers driven. According to the statistics on road traffic 
accidents in the year 2016 compiled by the German Federal Statistical Office (Statistisches Bundesamt, Destatis) 
[3], about 3,375 accidents per 1 billion kilometers driven occurred in 2016. Or, to put it differently: On average, 
there was one accident every 296,296 kilometers. This corresponds to 0.003375 accidents per 1,000 km. However, 
it is not practical to use this figure as an evaluation standard for the first criterion. In order to test a system, a much 
higher number of accidents per kilometer should be simulated. In order to achieve a compromise between higher 
accident numbers and the highest possible comparability of vehicle and accident situations, a range of 50 to 100 
accidents per 1,000 km is desirable. 

origin:
01.08.2017

2:00 pm
destination 1:

accident at 2:30 pm

destination 2:
accident at 2:40 pm

destination 3:
accident at 3:40 pm

destination 4:
accident at 3:45 pm

Figure 4: schematic of the third concept 
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The second criterion is the representativeness of the selected accidents within the context of all available police-
recorded accident data. The database of accident data recorded by the Saxon police includes, among others, all 
police-recorded accidents between 2010 and 2016. Each of these accidents is described by characteristic features 
such as accident category, kind of accident, type of accident and area (urban, rural). This means that the 
distribution of these features within the Saxon database reflect the general accident situation in Saxony in the past 
years. It is therefore desirable to achieve an approximation of this distribution within the planned simulated test 
drive. 

The third criterion is the logical comparability of vehicle situation and accident scenario. The repeated simulation 
of a past accident becomes more comprehensible if the situation of the simulated vehicle and the situation that 
caused the accident are as similar as possible. Different framework conditions may decrease or increase the 
similarities between the two situations. Therefore, the framework conditions must be studied in terms of their 
effects. 

After the analysis and subsequent definition of the concepts framework conditions, they can be compared. This 
process takes into account seven criteria that are weighted differently. After the evaluation of all concepts, it is 
possible to identify the best one. 

Trajectory-based analysis of selected accident scenarios 
The selection process for the microsimulation is carried out partly based on concepts (within the concepts) and 
partly independent from concepts (outside of the concepts). Trajectory-based selection is the part of the selection 
process that is independent from concepts. 

Upon the arrival at a selected accident location, the simulation program 
examines whether the course of the simulated test vehicle corresponds 
with the intended course of a party involved in an accident. If the courses 
correspond, the test vehicle is allowed to simulate the specific accident 
scenario in the role of this specific party only. Figure 5 shows the 
schematic of a potential accident scenarios along the test route. The party 
causing the accident (red) collides with the injured party (blue) while 
making a left turn. The course of the simulated test vehicle (green), 
however, does not correspond with either of the two intended courses. In 
this case, the specific accident scenario was selected within the concept on 
the basis of framework conditions, but it may not be used within the 
microsimulation because the course and the trajectories do not correspond. 
This is the reason why it is important to establish a method for assessing 
the courses and trajectories of the parties involved in an accident. 

 

The solution of this problem is a method that combines the 
evaluation of the distance between course and trajectory with 
the evaluation of the direction of travel. The course and the 
trajectories are defined by any given number of points 
represented by geographic coordinates (from now on called 
supporting points). In Figure 6, these are visualized by the 
round dots. For each supporting point of the trajectory (blue), 
the shortest perpendicular distance to the course (green) is 
calculated (see 𝑠𝑠1 to 𝑠𝑠5). The resulting vector of shortest 
distances �̅�𝑠 can be studied in terms of various parameters such 
as mean value and standard deviation. 

In order to compare the directions of travel, it is necessary to 
analyze the order of the trajectories supporting points (T1 to 
T5) and their corresponding closest course supporting points 
(R1 to R8). For this, each trajectory supporting point Tx is 
matched with the route supporting point Rx that is closest to 
the point depicted by the red cross in Figure 6. For example, 
T1 is matched with R8, T2 is matched with R7 and T3 is 
matched with R6. This way, two vectors are formed that 
conatin the figures of the matching points (for example: 𝑇𝑇� =
[1; 2; 3; 4; 5] and 𝑅𝑅� = [8; 7; 6; 5; 3]). 

  

Figure 5: Necessity of the 
trajectory-based selection 

Figure 6: sketch of the solution approach of the 
trajectory-based selection 
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After that, it is possible to estimate the strength of the linear relation of the two vectors 𝑇𝑇� and 𝑅𝑅� by using the 
Pearson correlation 𝜌𝜌 according to the Equation 1. 

𝜌𝜌 =
𝑐𝑐𝑐𝑐𝑐𝑐( 𝑇𝑇� ,𝑅𝑅�)
𝜎𝜎 𝑇𝑇� ∗ 𝜎𝜎 𝑅𝑅�

 ,𝑤𝑤𝑤𝑤𝑤𝑤ℎ 𝑐𝑐𝑐𝑐𝑐𝑐( ) − 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑤𝑤𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑢𝑢𝑐𝑐𝑢𝑢 𝜎𝜎 − 𝑠𝑠𝑤𝑤𝑐𝑐𝑐𝑐𝑢𝑢𝑐𝑐𝑐𝑐𝑢𝑢 𝑢𝑢𝑐𝑐𝑐𝑐𝑤𝑤𝑐𝑐𝑤𝑤𝑤𝑤𝑐𝑐𝑐𝑐 (Equation 1) 

In order to test which parameters (mean value, standard deviation, … , 𝜌𝜌) allow the identification of suitable 
trajectories, a test data set is compiled. The basis of this are 18 different random accidents with known trajectories. 
For each of the accident locations, all courses in all possible directions are established. Then, a manual assessment 
is carried out for each of the 256 route-trajectory-pairs of whether they are approximately parallel. If this is the 
case, a distinction is made between “right direction” and “wrong direction”. With the help of several graphic 
representation methods, it is then possible to determine which parameters allow the identification and selection of 
suitable trajectories (along the course, right direction). 

Microsimulation 
The selected accidents are automatically transferred to the microsimulation via an interface and then analyzed. 
Because the PC-Crash software can easily be integrated by external applications and also supports trajectory-
based collision detection, it is used as microsimulation software. 

Input data such as the real trajectories of the parties involved in the accident, their speeds and initial locations 
provide the basis for microsimulation. The maximum allowed speeds of the involved parties can be found in the 
police-recorded accident data, an uniform movement is assumed. The initial locations of both parties are deduced 
on the following assumption: the vehicles of both parties collide at the end points of their real trajectories. Based 
on this assumption, possible initial locations for each party can be established with the help of a reverse simulation 
along their trajectories that starts at the end points. 

The result of the microsimulation consists of two return values. The first return value stores the information 
whether a collision has occurred without the system under testing, thus error-proofing the process. The second 
return value gives information about whether the vehicles collide while the system under testing is active. If the 
first return value is negative (no collision), then no claims can be made about the effect of the system under testing 
on the basis of this specific accident scenario. If the first return value is positive, a second step describes whether 
a collision was prevented by the system or not. The system’s effects can then be evaluated based on the accidents 
prevented. 

 

RESULTS 

The results of the comparison of the three concepts are depicted in Table 1. 

Table 1. 
Comparison of the three concepts with the help of a weighted decision matrix 

Table 1 shows that each of the concepts has its advantages and disadvantages. However, for the simulation of a 
test drive under the given requirements, the third concept is the most suitable one. 

Criterion Weighting Concept 1 Concept 2 Concept 3 

Comparable with reality 5 9 4 9 

Accident numbers along the test route 2 5 5 9 

Options of test route manipulation 3 2 2 8 

Functionality of long test routes 5 3 2 10 

Options of influencing the testing 
environment 2 5 9 0 

Functionality in case of missing accident data 4 10 10 9 

Option of expanding the simulation to 
further regions 5 9 9 7 

Result 
[Percentage of maximum points attainable]  66 % 57 % 80 % 
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Results of the trajectory-based selection process 
The analysis of the parameters for the identification of suitable route-trajectory pairs had the result that no single 
parameter offers a finite solution. Instead, a combination of the standard deviation and the Pearson correlation 
coefficient is used. Figure 7 shows which threshold values need to be defined. 

Based on the above image, the trajectory-based scenario selection procedure is implemented as follows: For the 
examination, the type of road use of the trajectories taken into account is limited to the class of “passenger car”. 
For example, pedestrian trajectories are not allowed. The remaining intended trajectories can be examined with 
the help of the standard deviation and the correlation coefficient. In 97% of cases, trajectories with a standard 
deviation 𝜎𝜎 ≤ 3 and a correlation coefficient 𝜌𝜌 ≥ 0,8 are suitable for the current route and go in the right direction. 

Example application of the program 
The example application demonstrates the entire process of the developed program using a vehicle equipped with 
an advanced emergency braking system (AEBS). At the beginning of the example application, the input data is 
defined. The test drive begins on August 1, 2017 at the Fraunhofer IVI in Dresden and covers a distance of 100 
km or more. The system under testing is mapped in PC-Crash with the help of a proximity sensor with a range of 
80 m, an opening angle of 5 degrees and a cycle time of 100 ms, as well as with an active TTC time to collision 
monitoring system. If the TTC falls below 1 second, an emergency braking process is initiated. 

Within 11 minutes, the program carries out the construction 
of the route, the selection process and the microsimulation. 
The resulting test route of 109 km length is visualized in 
Figure 8 by a transparent green line. It passes through 
Dresden’s urban center as well as through surrounding areas. 
Along this route, the test vehicle is confronted with 18 
selected accident scenarios. 14 of these pass the trajectory-
based selection process and are then simulated 
microscopically. The results are summarized in Figure 9. 

  

Figure 7: standard deviation and correlation coefficient (256 route-trajectory pairs) 
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Figure 8: test route of the example application 



Pfitzner 8 
 

The 14 simulated accident situations are plotted according to their types of accident and distinguished by color. 
Only those accident situations that were prevented by the AEBS are marked green. Thus, the efficacy of the AEBS 
becomes evident with respect to the different types of accident. 

According to Figure 9, the AEBS is able to prevent over 70 % of accidents in parallel traffic (accident type 6) 
within the simulation. However, no accidents are prevented during turning and during turning/crossing accidents 
(types of accident 2 and 3). This leads to the conclusion that the AEBS in use is mainly effective in rear-end 
collisions. Further examination of the simulation files created by the microsimulation confirms this conclusion. 
Only in the situation of a rear-end collision on a straight road is the injured party detected in time, so that an 
emergency braking process can prevent the collision. In rear-end collisions in turns and in all other accident 
situations included in the simulation, the injured party is not detected or not detected early enough. 

 

DISCUSSION 

The integration of traffic and weather data would be very beneficial for the area of the macrosimulation. The 
implementation of other external macrosimulation applications is also conceivable to and the modular design of 
the program supports this. 

The selected variant of microsimulation is able to draw a conclusion about prevented collisions. However, a more 
detailed realization of sensors and advanced driver assistance system would improve the plausibility of results. 
Also, no exact input parameter exist for the microsimulation, which is why they need to be deduced with the help 
of assumptions. Thus, there is a potential for an expansion of the microsimulation. Due to the modular design of 
the program, the microsimulation could also be realized through the implementation of other simulation programs. 

In order to evaluate the simulation of an entire route, the accident selection is studied in terms of representativeness 
by comparing it to a reference data set. For this, the distribution of the double-digit types of accident of the selected 
accidents is examined in the context of the distribution of the double-digit accident types of the reference data set. 
The result of the comparison provides the basis for a two-level score, which is calculated automatically. This score 
first examines how many of the types of accident are reflected in the accident selection. Subsequently, it evaluates 
how well the reflected types of accident are represented. The score has values between 0 and 1, where 1 symbolizes 
a perfect reflection of the overall data set. 

The score of the example application was calculated to be 0.38, which means an inadequate representativeness. 
Although 5 of 14 collisions were prevented, the statement “The AEBS is able to prevent 5 in 14 (35%) accidents” 
is a misinterpretation. A longer test route with an increased number of simulated accidents would improve chances 
of a higher score and a more well-founded statement. 

  

Figure 9: results of the example application, broken down by type of 
accident 
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CONCLUSION 

Due to the necessity mapping test drives in a simulation environment, a method was developed that allows a 
statement about test kilometers driven and accidents prevented. To achieve this, a simple macroscopic simulation 
of a test vehicle was combined with a selection process for specific accident scenarios with the objective of 
transferring selected scenarios from the macroscopic simulation to the microscopic simulation. On the basis of 
multiple simulation, the latter allows to draw a conclusion about the collision prevention potential of the system 
tested. 

The reduction of effort and expenses for real test drives will be possible with the help of the described method. If 
comprehensive accident data is available, the expansion of the simulation to additional regions will be possible. 
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